Виды энергии и последовательность их освоения. Виды источников энергии и их использование

В связи с развитием производственных технологий и значительным ухудшением экологической ситуации во многих регионах земного шара, человечество столкнулось с проблемой поиска новых источников энергии. С одной стороны, количество добываемой энергии должно быть достаточным для развития производства, науки и коммунально-бытовой сферы, с другой стороны, добыча энергии не должна отрицательно сказываться на окружающей среде.

Данная постановка вопроса привела к поиску так называемых альтернативных источников энергии — источников, соответствующих вышеуказанным требованиям. Усилиями мировой науки было обнаружено множество таких источников, на данный момент большинство из них уже используется более или менее широко. Предлагаем вашему вниманию их краткий обзор:

Солнечная энергия

Солнечные электростанции активно используются более чем в 80 странах, они преобразуют солнечную энергию в электрическую. Существуют разные способы такого преобразования и, соответственно, различные типы солнечных электростанций. Наиболее распространены станции, использующие фотоэлектрические преобразователи (фотоэлементы), объединенные в солнечные батареи. Большинство крупнейших фотоэлектрических установок мира находятся в США.

Энергия ветра

Ветроэнергетические установки (ветряные электростанции) широко используются в США, Китае, Индии, а также в некоторых западноевропейских странах (например в Дании, где 25% всей электроэнергии добывают именно таким способом). Ветроэнергетика является весьма перспективным источником альтернативной энергии, в настоящее время многие страны значительно расширяют использование электростанций данного типа.

Биотопливо

Главными преимуществами данного источника энергии перед другими видами топлива являются его экологичность и возобновляемость. К альтернативным источникам энергии относятся не все виды биотоплива: традиционные дрова тоже являются биотопливом, но не являются альтернативным источником энергии. Альтернативное биотопливо бывает твердым (торф, отходы деревообработки и сельского хозяйства), жидким (биодизель и биомазут, а также метанол, этанол, бутанол) и газообразное (водород, метан, биогаз).

Энергия приливов и волн

В отличие от традиционной гидроэнергетики, использующей энергию водного потока, альтернативная гидроэнергетика пока не получила широкого распространения. К главным минусам приливных электростанций относятся высокая стоимость их строительства и суточные изменения мощности, их за которых электростанции этого типа целесообразно использовать только в составе энергосистем, использующих также и другие источники энергии. Основные плюсы — высокая экологичность и низкая себестоимость получения энергии.

Тепловая энергия Земли

Для разработки этого источника энергии используются геотермальные электростанции, использующие энергию высокотемпературных грунтовых вод, а также вулканов. На данный момент более распространенной является гидротермальная энергетика, использующая энергию горячих подземных источников. Петротермальная энергетика, основанная на использовании «сухого» тепла земных недр, на данный момент развита слабо; основной проблемой считается низкая рентабельность данного способа получения энергии.

Атмосферное электричество

(Вспышки молний на поверхности Земли происходят практически одновременно в самых разных местах планеты )

Грозовая энергетика, основывающаяся на захвате и накоплении энергии молний, пока находится в стадии становления. Главными проблемами грозовой энергетики являются подвижность грозовых фронтов, а также быстрота атмосферных электрических разрядов (молний), затрудняющая накопление их энергии.

3.1 Энергия и её виды

3.2 Способы получения и преобразования энергии

3.3 Электрические и тепловые нагрузки и способы их регулирования

3.4 Прямое преобразование солнечной энергии в тепловую и электрическую

3.5 Ветроэнергетика

3.6 Гидроэнергетика

3.7 Биоэнергетика

3.8 Транспортирование тепловой и электрической энергии

3.8.1 Транспортирование тепловой энергии

3.8.2 Транспортирование электрической энергии

3.9 Энергетическое хозяйство промышленных предприятий

3.1 Энергия и её виды

Энергия (от греч. energeie - действие, деятельность) представляет собой общую количественную меру движения и взаимодействия всех видов материи. Это способность к совершению работы, а работа совершается тогда, когда на объект действует физическая сила (давление или гравитация). Работа - это энергия в действии.

Во всех механизмах при совершении работы энергия переходит из одного вида в другой. Но при этом нельзя получить энергии одного вида больше, чем другого, при любых ее превращениях, т. к. это противоречит закону сохранения энергии.

Различают следующие виды энергии: механическая; электрическая; тепловая; магнитная; атомная.

Электрическая энергия является одним из совершенных видов энергии. Её широкое использование обусловлено следующими факторами:

Получением в больших количествах вблизи месторождения ресурсов и водных источников;

Возможностью транспортировки на дальние расстояния с относительно небольшими потерями;

Способностью трансформации в другие виды энергии: механическую, химическую, тепловую, световую;

Отсутствием загрязнения окружающей среды;

Внедрением на основе электроэнергии принципиально новых прогрессивных технологических процессов с высокой степенью автоматизации.

Тепловая энергия широко используется на современных производствах и в быту в виде энергии пара, горячей воды, продуктов сгорания топлива.

Преобразование первичной энергии во вторичную, в частности, в электрическую, осуществляется на станциях, которые в своем названии содержат указания на то, какой вид первичной энергии преобразуется на них в электрическую:

На тепловой электрической станции (ТЭС) - тепловая;

Гидроэлектростанции (ГЭС) - механическая (энергия движения воды);

Гидроаккумулирующей станции (ГАЭС) - механическая (энергия движения предварительно наполненной в искусственном водоеме воды);

Атомной электростанции (АЭС) - атомная (энергия ядерного топлива);

Приливной электростанции (ПЭС) - приливов.

В Республике Беларусь более 95 % энергии вырабатывается на ТЭС, которые по назначению делятся на два типа:

Конденсационные тепловые электростанции (КЭС), предназначенные для выработки только электрической энергии;

Теплоэлектроцентрали (ТЭЦ), на которых осуществляется комбинированное производство электрической и тепловой энергии.

3.2 Способы получения и преобразования энергии

Тепловая электростанция включает комплект оборудования, в котором внутренняя химическая энергия топлива (твердого, жидкого или газообразного) превращается в тепловую энергию воды и пара, преобразующуюся в механическую энергию вращения, которая и вырабатывает электрическую энергию. Схема выработки электроэнергии на ТЭС представлена на рисунке 6.

Как видно из представленной схемы, поступающее со склада (С) в парогенератор (ПГ) топливо при сжигании выделяет тепловую энергию, которая, нагревая подведенную с водозабора (ВЗ) воду, преобразует ее в энергию водяного пара с температурой 550 °С. В турбине (Т) энергия водяного пара превращается в механическую энергию вращения, передающуюся на генератор (Г), который превращает ее в электрическую. В конденсаторе пара (К) отработанный пар с температурой 123 …125 °С отдает скрытую теплоту парообразования охлаждающей его воде и с помощью циркулярного насоса (Н) в виде конденсата вновь подается в котел-парогенератор.

Рисунок 6 - Схема работы ТЭС

Схема ТЭЦ отличается от ТЭС тем, что взамен конденсатора устанавливается теплообменник, где пар при значительном давлении нагревает воду, подаваемую в главные тепловые магистрали.

Котельная установка представляет собой комплекс устройств для получения водяного пара под давлением или горячей воды. Она состоит из котлоагрегата и вспомогательного оборудования, газо- и воздухопроводов, трубопроводов пара и воды с арматурой, тягодутьевых устройств и др.

Районные , или производственные котельные предназначены для централизованного теплоснабжения жилищно-коммунального хозяйства или самого предприятия. С вводом в действие ТЭЦ некоторые из них остались без дела и могут использоваться как резервные и пиковые, и тогда их называют резервно-пиковыми.

Газотурбинная установка - это двигатель, в лопаточном аппарате которого потенциальная энергия газа преобразуется в кинетическую энергию и затем частично превращается в механическую работу, которая преобразуется в электрическую энергию.

Рисунок 7 - Схема газотурбинной установки с подводом тепловой энергии при = с onst

1 - воздушный компрессор; 2 - газовая турбина; 3 - электрогенератор; 4 - топливный насос; 5 - камера сгорания

В простейшей газотурбинной установке постоянного горения (рисунок 7) воздух, сжатый до некоторого давления в компрессоре 1, поступает в камеру сгорания 5, где его температура повышается за счет сжигания топлива, подающего топливным насосом 4, при постоянном давлении. Продукты сгорания под давлением и при высокой температуре подводятся к турбине 2, в которой совершается работа расширения газа. При этом давление и температура падают. Далее продукты сгорания выбрасываются в атмосферу.

Парогазовая установка - это турбинная теплосиловая установка, в тепловом цикле которой используются два рабочих тела - водяной пар и дымовые газы, поступающие из котлоагрегата.

Поступающий из атмосферы в компрессор 1 (рисунок 8) воздух сжимается с повышением температуры и подается в камеру сгорания 5, в которую при помощи топливного насоса и впрыскивается топливо. В камере сгорания 5 происходит горение топлива, а образующиеся газы поступают в газовую турбину 2, где и совершается работа.

Рисунок 8 - Схема парогазовой установки

1 - воздушный компрессор; 2 - газовая турбина; 3 - электрогенератор; 4 – топ-ливный насос; 5 - камера сгорания; 6 - подогреватель; 7 - котел; 8 - паровая турбина; 9 - конденсатор водяного пара; 10 - питательный насос

Отработанные газы с температурой 350 °С и пониженным давлением поступают в подогреватель 6, где отдают часть теплоты для подогрева питательной воды, поступающей в котел 7 и, охладившись при этом, сбрасываются в атмосферу. Питательная вода используется в котле для получения пара, который поступает в паровую турбину 8 с температурой

540 °С. В ней пар расширяется, производя техническую работу. Отработанный в турбине пар поступает в конденсатор 9, в котором конденсируется, а образовавшийся конденсат при помощи насоса 10 направляется сначала в подогреватель 6, где воспринимает тепло отработавших в газовой турбине газов, а затем - в паровой котел 7. Расходы пара и газа подбираются таким образом, чтобы вода воспринимала максимальное количество теплоты газов. Термический коэффициент полезного действия установок - свыше 60 %.

О том, насколько эффективно внедрение паротурбинных установок, показывает внедрение в Витебском производственном объединении «Витязь» двух паротурбинных установок, которые способны вырабатывать 1500 кВт электроэнергии (по 750 кВт каждая) и ежемесячно экономить до 30 тыс. долларов на покупку энергии. Срок окупаемости проекта - чуть больше года.

Гидроэлектростанция представляет собой комплекс гидротехнических сооружений и энергетического оборудования, посредством которых энергия водных потоков или расположенных на относительно более высоких уровнях водоёмов преобразуется в электрическую энергию.

Технологический процесс получения электроэнергии на ГЭС включает:

Создание разных уровней воды в верхнем и нижнем бьефах;

Превращение энергии потока воды в энергию вращения вала гидравлической турбины;

Превращение гидрогенератором энергии вращения в энергию электрического тока.

Гидроаккумулирующая электростанция представляет собой такую гидроэлектростанцию, в которой поступление воды в водоем верхнего бьефа обеспечивается искусственно, посредством насосов, работающих за счет электроэнергии из системы. Она оборудована кроме турбин насосами (помпами) или только турбинами, которые могут работать в режиме помп (обратные турбины) для подъема воды в часы малых нагрузок в энергосистеме с нижнего бьефа в водохранилище верхнего бьефа за счет подключения к энергосистеме. При больших нагрузках ГАЭС работают как обычные ГЭС.

Тепловые схемы АЭС зависят от типа реактора; вида теплоносителя; состава оборудования и могут быть одно-, двух-, и трехконтурными.

Схема выработки электроэнергии на одноконтурной АЭС представлена па рисунке 9. Пар вырабатывается непосредственно в реакторе и поступает в паровую турбину. Отработанный пар конденсируется в конденсаторе, и конденсат подается насосом в реактор. Схема проста, экономична. Однако пар (рабочее тело) на выходе из реактора становится радиоактивным, что предъявляет повышенные требования к биологической защите и затрудняет проведение контроля и ремонта оборудования.

Рисунок 9 - Тепловая схема простейшей одноконтурной атомной электростанции

1 - атомный реактор; 2 - турбина; 3 - электрогенератор; 4- конденсатор водяных паров; 5 - питательный насос

В двухконтурных схемах производства электроэнергии на АЭС имеется два самостоятельных контура (рисунок 10) - теплоносителя и рабочего тела. Общее оборудование у них - парогенератор, в котором нагретый в реакторе теплоноситель отдает свою теплоту рабочему телу и при помощи циркуляционного насоса возвращается в реактор.

Рисунок 10 - Тепловая схема простейшей двухконтурной атомной электростанции

1 - атомный реактор; 2 - теплообменник-парогенератор; 3 - главный циркуляционный насос; 4 - турбина; 5 - электрогенератор; 6 - конденсатор водяных паров; 7 - питательный насос

Давление в первом контуре (контуре теплоносителя) значительно выше, чем во втором. Полученный в теплогенераторе пар подается в турбину, совершает работу, затем конденсируется, и конденсат питательным насосом подается в парогенератор. Хотя парогенератор усложняет установку и уменьшает её экономичность, но препятствует радиоактивности во втором контуре.

В трехконтурной схеме теплоносителями первого контура служат жидкие металлы (например, натрий). Радиоактивный натрий из реактора поступает в теплообменник промежуточного контура с натрием, которому отдает теплоту и возвращается в реактор. Давление натрия во втором контуре выше, чем в первом, что исключает утечку радиоактивного натрия. В промежуточном втором контуре натрий отдает теплоту рабочему телу (воде) третьего контура. Образовавшийся пар поступает в турбину, совершает работу, конденсируется и поступает в парогенератор.

Трехконтурная схема требует больших затрат, но обеспечивает безопасную работу реактора.

Отличие ТЭС от АЭС состоит в том, что источником теплоты на ТЭС является паровой котел, в котором сжигается органическое топливо; на АЭС -ядерный реактор, теплота в котором выделяется делением ядерного топлива, обладающего высокой теплотворной способностью (в миллионы раз выше, чем органическое топливо). Один грамм урана содержит 2,6 10 ядер, при делении которых выделяется 2000 кВт ч энергии. Для получения такого же количества энергии нужно сжечь более 2000 кг угля.

Однако при эксплуатации АЭС образуется большое количество радиоактивных веществ в топливе, теплоносителе, конструкционных материалах. Поэтому АЭС является источником радиационной опасности для обслуживающего персонала и проживающего вблизи населения, что повышает требование к надежности и безопасности её эксплуатации.

Теплоэлектрацентраль (ТЭЦ) - это тепловая электростанция, выраба-тывающая не только электрическую энергию, но и тепло, отпускаемое потре-бителям в виде пара и горячей воды для коммунально-бытового потребления. При такой комбинированной выработке тепловой и электрической энергии в тепловую сеть отдается главным образом теплота отработавшего в турбинах пара (или газа), что приводит к снижению расхода топлива на 25-30 % по сравнению с раздельной выработкой энергии на КЭС или ГРЭС (государственные районные электростанции) и теплоты в районных котельных.

Рассматриваемые вопросы:

1. Определение энергии.

2. Виды энергии

3. Назначение и использование энергии.


В окружающем нас мире материя существует в форме вещества, поля и физического вакуума. В форме вещества и поля материя обладает массой, импульсом, энергией. Необходимым условием любого действия, взаимодействия и вообще существования является потребление энергии, обмен энергией. В человеческом обществе уровень культуры как материальной, так и духовной находится в тесной связи с количеством потребляемой энергии. Уровнем энерговооруженности определяется экономика любой страны. Так что же такое энергия?

1. Энергия и ее виды

Энергия – всеобщая основа природных явлений, базис культуры и всей деятельности человека. В то же время под энергией понимается количественная оценка различных форм движения материи, которые могут превращаться одна в другую.

Согласно представлениям физической науки, энергия – это способность тела или системы тел совершать работу.

В природе существует около 20 научно обоснованных видов энергии. Существуют также различные классификации видов и форм энергии. Человек в своей повседневной жизни наиболее часто встречается со следующими видами энергии: механическая, электрическая, электромагнитная, тепловая, химическая, атомная (внутриядерная), гравитационная и другие виды. На практике непосредственно применяются всего 4 вида энергии: тепловая (70-75%), механическая (20-22%), электрическая (3-5%), электромагнитная – световая (15%).

Более двух третей всей потребляемой энергии используется в виде теплоты для технических нужд, отопления, приготовления пищи, оставщаяся часть – в виде механической, прежде всего в транспортных установках, и электрической энергии. Причем доля использования электрической энергии постоянно возрастает.

Если энергия – результат изменения состояния движения материальных точек или тел, то она называется кинетической; к ней относят механическую энергию движения тел, тепловую энергию, обусловленную движением молекул.

Если энергия – результат изменения взаимного расположения частей данной системы или ее положения по отношению к другим телам, то она называется потенциальной; к ней относят энергию масс, притягивающихся по закону всемирного тяготения, энергию положения однородных частиц, например, энергию упругого деформированного тела, химическую энергию.

Энергию в естествознании в зависимости от природы делят на следующие виды.

Механическая энергия – проявляется при взаимодействии, движении отдельных тел или частиц. К ней относят энергию движения или вращения тела, энергию деформации при сгибании, растяжении, закручивании, сжатии упругих тел (пружин). Эта энергия наиболее широко используется в различных машинах – транспортных и технологических.

Тепловая энергия – энергия неупорядоченного (хаотического) движения и взаимодействия молекул веществ. Тепловая энергия, получаемая чаще всего при сжигании различных видов топлива, широко применяется для отопления, проведения многочисленных технологических процессов (нагревания, плавления, сушки, выпаривания, перегонки и т.д.).

Электрическая энергия – энергия движущихся по электрической цепи электронов (электрического тока). Электрическая энергия применяется для получения механической энергии с помощью электродвигателей и осуществления механических процессов обработки материалов: дробления, измельчения, перемешивания; для проведения электрохимических реакций; получения тепловой энергии в электронагревательных устройствах и печах; для непосредственной обработки материалов (электроэрозионная обработка).

Этот вид энергии является наиболее совершенным, благодаря следующим факторам:


  • Возможности получения ее в больших количествах вблизи месторождений горючих ископаемых или водных источников;

  • Удобству транспортировки на дальние расстояния с относительно небольшими потерями;

  • Способности трансформации в другие виды энергии;

  • Отсутствию загрязнения окружающей среды;

  • Возможности создания принципиально новых технологических процессов с высокой степенью автоматизации и роботизации производства.
Химическая энергия – это энергия, «запасенная» в атомах веществ, которая высвобождается или поглощается при химических реакциях между веществами. Химическая энергия либо выделяется в виде тепловой энергии при проведении экзотермических реакций (например, горении топлива), либо преобразуется в электрическую в гальванических элементах и аккумуляторах. Эти источники энергии характеризуются высоким КПД (до 98%), но низкой емкостью.

Магнитная энергия – энергия постоянных магнитов, обладающих большим запасом энергии, но «отдающих» ее весьма неохотно. При прохождении электрического тока по цепи вокруг проводника создается магнитное поле. Электрическая и магнитная энергии тесно взаимосвязаны друг с другом, каждую из них можно рассматривать как «оборотную» сторону другой. Поскольку электрическая и магнитная энергия тесно связаны, на практике используется понятие электромагнитная энергия.

Электромагнитная энергия – это энергия электромагнитных волн, т.е. движущихся электрического и магнитного полей. Она включает видимый свет, инфракрасные, ультрафиолетовые, рентгеновские лучи и радиоволны.

Перечисленные диапазоны излучения отличаются длиной волны (и частотой):


  • Радиоволны – больше 10 -2 см;

  • Инфракрасное излучение – 2*10 -4 – 7, 4*10 -5 ;

  • Видимый свет - 7, 4*10 -5 -4*10 -5 ; (420-760 нм);

  • Ультрафиолетовое излучение - 4*10 -5 -10 -6 ;

  • Рентгеновское излучение – 10 -5 -10 -12 ;

  • Гамма излучение – больше чем 10 -12 см.
Таким образом, электромагнитная энергия – это энергия излучения. Излучение переносит энергию в форме энергии электромагнитной волны. Когда излучение поглощается, его энергия преобразуется в другие формы, чаще всего в теплоту.

Ядерная энергия – энергия, локализованная в ядрах атомов радиоактивных веществ . Она высвобождается при делении тяжелых ядер (ядерная реакция) или синтезе легких ядер (термоядерная реакция).

Бытует и старое название данного вида энергии – атомная энергия, однако это название неточно отображает сущность явлений, приводящих к высвобождению колоссальных количеств энергии, чаще всего в виде тепловой и механической.

Гравитационная энергия – энергия, обусловленная взаимодействием (тяготением) массивных тел, она особенно ощутима в космическом пространстве. В земных условиях, это, например, энергия, «запасенная» телом, поднятым на определенную высоту над поверхностью Земли – энергия силы тяжести.

Часто в особые виды энергии выделяют биологическую и психическую энергии. Однако, согласно современным воззрениям естествознания, психические и биологические процессы это особая группа физико-химических процессов, но они осуществляются на основе описанных выше видов энергии.

Таким образом, в зависимости от уровня проявления, можно выделить энергию макромира – гравитационную, энергию взаимодействия тел – механическую, энергию молекулярных взаимодействий – тепловую,

К энергии , образующейся на уровне микромира , относят – энергию атомных взаимодействий – химическую; энергию излучения – электромагнитную; энергию, заключенную в ядрах атомов – ядерную.

Современная наука не исключает существование и других видов энергии, пока не зафиксированных, но не нарушающих единую естественнонаучную картину мира и понятие об энергии и закон сохранения энергии.

В Международной системе единиц СИ в качестве единицы измерения энергии принят Джоуль (Дж). 1 Дж эквивалентен
1 ньютон х метр (Нм). Если расчеты связаны с теплотой, с расчетом энергии биологических объектов и многими другими видами энергии, то в качестве единицы энергии применяется внесистемная единица - калория (кал) или килокалория (ккал), 1кал=4,18 Дж. Для измерения электрической энергии пользуются такой единицей, как Ватт·час (Вт·ч, кВт·ч, МВт·ч), 1 Вт·ч=3,6 МДж. Для измерения механической энергии используют величину 1 кг·м=9,8 Дж.

Энергия, непосредственно извлекаемая в природе (энергия топлива, воды, ветра, тепловая энергия Земли, ядерная), и которая может быть преобразована в электрическую, тепловую, механическую, химическую называется первичной . В соответствии с классификацией энергоресурсов по признаку исчерпаемости, можно классифицировать и первичную энергию. На рис. 1 представлена схема классификации первичной энергии.


Энергия приливов

Геотермальная энергия

Энергия морских волн

Биологическое топливо

Энергия ветра

Солнечная энергия

Нетрадиционные виды энергии

Газообразные виды топлива

Жидкие виды топлива

Твёрдые виды топлива

Атомная энергия

Гидроэнергия рек

Органическое топливо

Традиционные виды энергии

Первичная энергия


Рис. 1. Классификация первичной энергии

Энергия, получаемая человеком, после преобразования первичной энергии на специальных установках - станциях, называется вторичной (электрическая энергия, энергия пара, горячей воды и т.д.).

Немногим более половины всей потребляемой энергии используется в виде тепла для технических нужд , отопления, приготовления пищи, оставшаяся часть - в виде механической, прежде всего в транспортных установках, и электрической энергии.

Электрическая энергия по праву может считаться основой современной цивилизации. Это обусловлено ее преимуществами и удобством использования. Подавляющее большинство технических средств механизации и автоматизации производственных процессов (оборудование, приборы, ЭВМ), замена человеческого труда машинным в быту имеют электрическую основу.

Электрическая энергия – наиболее универсальный вид энергии. Она нашла широкое применение в быту и во всех отраслях народного хозяйства. Насчитывается свыше четырехсот наименований электробытовых приборов: холодильники, стиральные машины, кондиционеры, вентиляторы, телевизоры, магнитофоны, осветительные приборы и т.д. Нельзя представить промышленность без электрической энергии. В сельском хозяйстве применение электричества непрерывно расширяется: кормление и поение животных, уход за ними, отопление и вентиляция, инкубаторы, калориферы, сушилки и т.д.Электрификация – основа технического прогресса любой отрасли народного хозяйства. Она позволяет заменить неудобные для использования энергетические ресурсы универсальным видом энергии – электрической энергией, которую можно передавать на любое расстояние, превращать в другие виды энергии, например, в механическую или тепловую, делить ее между потребителями.

Преимущества электроэнергии:

1. Электрическая энергия универсальна, она может быть использована для самых различных целей. В частности, ее очень просто превратить в тепло, свет. Это делается, например, в электрических источниках света (лампочках накаливания), в технологических печах, используемых в металлургии, в различных нагревательных и отопительных устройствах. Превращение электрической энергии в механическую используется в приводах электрических моторов.

2. При потреблении электрической энергии ее можно бесконечно дробить. Так, мощность электрических машин в зависимости от их назначения различна: от долей ватта в микродвигателях, применяемых во многих отраслях техники и в бытовых изделиях, до огромных величин, превышающих миллион киловатт, в генераторах электростанций.

3. В процессе производства и передачи электрической энергии, можно концентрировать ее мощность, увеличивать напряжение и передавать по проводам как на малые, так и на большие расстояния любое количество электрической энергии от электростанции, где она вырабатывается, всем ее потребителям.

Развитие естествознания на протяжении жизни человечества неопровержимо доказало, что энергия никогда не создается из ничего и не уничтожается бесследно, она только переходит из одного вида в другой, т.е.

сумма всех видов энергии остается постоянной. В этом состоит суть одного из самых фундаментальных законов Вселенной – закон сохранения энергии.

При любых обсуждениях вопросов, связанных с использованием энергии, необходимо отличать энергию упорядоченного движения, известную в технике под названием свободной энергии (механическая, химическая, электрическая, электромагнитная, ядерная) и энергию хаотического движения , т.е. теплоту.Любая из форм свободной энергии может быть практически полностью использована. В то же время хаотическая энергия тепла при превращении в механическую энергию теряется в виде тепла. Мы не в силах полностью упорядочить случайное движение молекул, превратив его энергию в свободную. Более того, в настоящее время практически нет способа непосредственного превращения химической и ядерной энергии в электрическую и механическую , как наиболее используемые. Приходится внутреннюю энергию веществ превращать в тепловую, а затем в механическую или электрическую с большими неизбежными теплопотерями.Таким образом, все виды энергии после выполнения ими полезной работы превращаются в теплоту с более низкой температурой, которая практически непригодна для дальнейшего использования.

Закон сохранения энергии нашел подтверждение в различных областях – от механики Ньютона до ядерной физики. Причем закон сохранения энергии – это не только плод воображения или обобщения экспериментов. Вот почему можно полностью согласиться с утверждением одного из крупнейших физиков-теоретиков Пуанкаре: «Так как мы не в силах дать общего определения энергии, принцип ее сохранения означает, что существует нечто, остающееся постоянным. Поэтому, к каким бы новым представлениям о мире не привели нас будущие эксперименты, мы заранее знаем: в них будет нечто остающееся постоянным, что можно назвать ЭНЕРГИЕЙ».

Учебная дисциплина "Основы энергосбережения" призвана вооружить будущего специалиста знаниями общих законов и подходов к расчету процессов, возникающих при получении, трансформации и передаче энергии.

3. Проблемы использования энергии человеком

Из всех видов энергоресурсов энергия Солнца имеет особое значение. Все виды энергоресурсов есть результат естественных преобразований солнечной энергии. Уголь, нефть, природный газ, торф, горючие сланцы и дрова – это запасы лучистой энергии Солнца, извлеченные и преобразованные растениями. В процессе реакции фотосинтеза из неорганических элементов окружающей среды – воды Н 2 О и углекислого газа СО 2 – под воздействием солнечного света в растениях образуется органическое вещество, основным элементом которого является углерод С . В определенную геологическую эпоху на протяжении миллионов лет из отмерших растений под воздействием давления и температурного режима, которые, в свою очередь, являются результатом конкретного количества энергии Солнца, падающего на Землю, и образовались органические энергетические ресурсы, основу которых составляет углерод, ранее накопленный в растениях. Энергия воды также получается за счет солнечной энергии, испаряющей воду и поднимающей пар в высокие слои атмосферы. Ветер возникает за счет различной температуры нагревания Солнцем разных точек нашей планеты. Кроме того, непосредственно излучение Солнца, приходящееся на поверхность Земли, обладает огромным потенциалом энергии.

Таким образом, образование органического топлива является результатом, с одной стороны, естественных преобразований солнечной энергии, а с другой, – результатом теплового, механического и биологического воздействия в течение многих столетий на останки растительного и животного мира, откладывавшиеся во всех геологических формациях. Все это топливо имеют углеродную основу, и энергия высвобождается из него, главным образом, в процессе образования диоксида углерода (СО2).

На протяжении всего своего существования человечество использовало энергию, накопленную природой в течение миллиардов лет. При этом способы ее использования постоянно совершенствовались с целью получения максимальной эффективности .

Так, в самом начале своего эволюционного развития человеку была доступна только энергия мышц его тела . Позднее человек научился получать и использовать энергию огня . Очередной виток эволюционного развития человеческого общества принес возможность использовать энергию воды и ветра – появились первые водяные и ветряные мельницы, водяные колеса, парусные суда, использующие силу ветра для своего перемещения. В XVIII веке была изобретена паровая машина, в которой тепловая энергия , полученная в результате сжигания угля или древесины, превращалась в энергию механического движения. В XIX веке была открыта вольтовая дуга, электрическое освещение, изобретен электродвигатель, а затем и электрогенератор, - что и явилось началом века электричества . XX век явил собой подлинную революцию в освоении человечеством способов получения и использования энергии: строятся тепловые, гидравлические, атомные электростанции огромной мощности, сооружаются линии передачи электрической энергии высокого, сверх- и ультравысокого напряжения, разрабатываются новые способы производства, преобразования и передачи электроэнергии (управляемая термоядерная реакция, магнитогидродинамический генератор, сверхпроводниковые турбогенераторы и т.д.), создаются мощные энергосистемы . В это же время появляются мощные системы нефте- и газоснабжения.
Таким образом, окружающий нас мир обладает поистине неиссякаемым источником различных видов энергии. Некоторые из них еще в полной мере не используются и в нынешнее время – энергия Солнца, энергия взаимодействия Земли и Луны, энергия термоядерного синтеза, энергия тепла Земли .

Сейчас энергия играет решающую роль в развитии человеческой цивилизации. Существует тесная взаимосвязь между расходом энергии и объемом выпускаемой продукции. Энергетика имеет большое значение в жизни человечества. Уровень ее развития отражает уровень развития производительных сил общества, возможности научно-технического прогресса и уровень жизни населения. К сожалению, большинство энергии, потребляемой человеком, превращается в бесполезное тепло из-за низкой эффективности использования имеющихся энергетических ресурсов.


Ориентировочное распределение потребляемой энергии за год в мире приведено в табл. 1.1. Величина энергии дается в количестве угля в мегатоннах (Мт), который при сгорании дал бы ту же энергию.
На питание людей ежегодно идет около 400 Мт, из которых около 40 Мт превращается в полезный труд. На бытовые нужды расходуется около 800 Мт, на общественное производство – 1000 Мт.

Таблица1.1
Годовое потребление энергии в мире

Форма энергии


Количество, Мт

Источник

Питание людей и корм рабочего скота

650

Солнечный свет
(в настоящем)

Дрова

150

Солнечный свет
(в прошлом)

Гидроэлектростанции

100

Движение воды

Уголь, нефть, газ, торф

6 600

Солнечный свет
(в прошлом)

Таким образом, из годового потребления, составляющего 7500 Мт, полезно используется 2200 Мт, остальное растрачивается в виде теплоты . Но даже эффективностью 2200/7500 Мт человечество не может похвастаться, так как не учтено падающее на Землю солнечное излучение, составляющее 10000000 Мт в год.

Рис. 2 Распределение энергии солнечного света.


Неравномерность использования энергии населением представлена на рис.3.

Рис. 3.Неравномерность использования энергии населением.


Энергия сыграла решающую роль в развитии цивилизации. Потребление энергии и накопление информации имеет примерно одинаковый характер изменения во времени, тесна связь между расходом энергии и объемом выпускаемой продукции. Установлено, что для удовлетворения физиологических потребностей человеку современному требуется приблизительно столько же энергии, сколько и человеку первобытному. В то же время рост потребления энергии поразительно высок. Но именно благодаря ему человек значительную часть своей жизни может посвятить досугу, образованию, созидательной деятельности, добился теперешней высокой продолжительности жизни.
Мы считаем энергию чем-то нужным, способным работать на нас.

Снабжение общества энергией необходимо для: обогрева помещений, обеспечения передвижения, выпуска необходимых нам товаров, поддержания работоспособности различных машин, механизмов, приборов, приготовления пищи, освещения, поддержания жизнедеятельности и т.д.


Эти примеры применения энергии можно разделить на три большие группы:
а) энергия питания . Она дороже других видов энергии: пшеница в перерасчете на Джоули гораздо дороже, чем уголь. Питание дает тепло для поддержания температуры тела, энергию для его движения, для осуществления умственного и физического труда;
б) энергия в виде тепла для обогрева домов и приготовления пищи. Она дает возможность жить в различных климатических условиях и разнообразить пищевой рацион человека;
в) энергия для обеспечения функционирования общественного производства. Это энергия для производства товаров и услуг, физического перемещения людей и грузов в пространстве, для поддержания работоспособности всех систем коммуникаций. Затраты этой энергии на душу населения значительно выше, чем затраты энергии на питание.

К сожалению, динамика развития цивилизации такова, что с каждым годом человечеству требуется все больше энергии для своего существования и развития. Несмотря на наличие большого количества энергоресурсов и использование человечеством различных видов энергии, скорость потребления энергетических ресурсов заметно превышает возможности их возобновления природой. Это в первую очередь касается невозобновимых природных ресурсов. Потребности человека растут, людей становится все больше и это вызывает гигантские объемы производства энергии и темпы роста ее потребления. Сегодня традиционные источники энергии (различные топлива, гидроресурсы) и технологии их использования уже не способны обеспечивать требуемый уровень энерговооруженности общества, потому что это невозобновляемые источники. И хотя разведанные запасы природных топлив очень велики, проблема истощения природных кладовых при нынешних и прогнозируемых темпах их разработки переходит в реальную и недалекую перспективу . Уже сегодня ряд месторождений из-за истощения оказывается непригодным для промышленной разработки, и за нефтью и газом, например, приходится идти на труднодоступные, отдаленные территории, на океанские шельфы и т.п. Серьезные прогнозисты доказывают, что при сохранении нынешних объемов и темпов роста энергопотребления в 3 … 5 % (а они без сомнения будут еще выше) запасы органических топлив полностью иссякнут через 70 – 150 лет.

Другим фактором, ограничивающим значительное увеличение объемов выработки энергии за счет сжигания топлива, является все возрастающее загрязнение окружающей средыотходами энергетического производства . Эти отходы значительны по массе и содержат большое количество различных вредных компонентов. Так, при производстве 106 кВт⋅_ч электроэнергии на современной электростанции, работающей на твердом топливе, в окружающую среду сбрасываются 14 000 кг шлака, 80 000 кг золы, 1 000 000 кг диоксида углерода, 14000 кг диокиси серы,4 000 кг окислов азота, 100 000 кг водяных паров, а также соединения фтора, мышьяка, ванадия и других элементов. А ведь количество вырабатываемой в год электроэнергии исчисляется сотнями и тысячами миллиардов киловатт-часов! Вот откуда кислотные дожди, отравления сельхозугодий и водоемов и тому подобные явления. Причем природа уже не в состоянии естественными физико-химическими и микробиологическими способами переработать эти загрязнения и самовосстановиться.

В ядерной энергетике возникают экологические проблемы другого рода. Они связаны с необходимостью исключить попадание ядерного горючего в окружающую среду и надежным захоронением ядерных отходов , что при современном уровне развития техники и технологий связано с большими трудностями.

Не менее вредным является и тепловое загрязнение окружающей среды, способное привести к глобальному потеплению климата Земли, таянью ледников и повышению уровня мирового океана. В свете изложенного выше все более актуальным становится широкое практическое использование так называемых нетрадиционных и возобновляемых источников энергии, которые ко всему прочему являются еще и экологически чистыми, не загрязняющими окружающую среду. К таким источникам относятся солнечная энергия, энергия ветра, энергия морских волн и приливов, энергия биомассы, геотермальная энергия и др. Природа каждого из этих источников энергии неодинакова, различны и способы их применения и использования. Вместе с тем им свойственны и общие черты, и в частности малая плотность потока генерируемой энергии, обуславливающая необходимость ее аккумулирования и резервирования.

4. Энергетическая безопасность и энергосбережение

Согласно прогнозам ученых, в обозримом будущем основным источником энергии останутся углеводородные топлива и ядерное горючее. Но человечество уже приближается к такому пределу повышения суммарной мощности традиционных энергоустановок, преодоление которого неизбежно повлечет экологическую катастрофу . Поэтому современная «нетрадиционная» энергетика – это тот резерв, который дает надежду и возможность преодолеть многие казалось бы неразрешимые проблемы и обеспечить возрастающие потребности человека в будущем. По мере совершенствования технологий и масштабов практического использования часть «нетрадиционных» энергоустановок перейдет в разряд традиционной «большой» энергетики, другая часть найдет свою нишу в «малой» энергетике для энергообеспечения локальных объектов. Так или иначе – за нетрадиционными источниками энергии большое будущее, и мы должны всемерно способствовать тому, чтобы это будущее скорее становилось настоящим. От этого зависят вопросы жизни и смерти на нашей планете.Именно этим определяется настоятельная необходимость рационального расхода энергии, снижения её удельных затрат во всех сферах человеческой деятельности. Это направление получило название - энергосбережение.

Один из результатов энергосбережения - прямое снижение в несколько раз затрат на ускорение темпов постоянных поисков источников энергии, их освоения. Стремление решить эти и другие проблемы наблюдается практически с самого начала большой энергетики. Оно реализуется как в поисках других первичных энергетических источников (электрохимические и термоядерные преобразователи), так и в разработке новых способов преобразования энергии первичных источников в электрическую, например, в термоэлектрических или термоэмиссионных устройствах, в МГД-генераторах.

Энергосбережение - организационная, научная, практическая, информационная деятельность государственных органов, юридических и физических лиц. Эта деятельность направлена на снижение расхода (потерь) топливно-энергетических ресурсов в процессе их добычи , переработки, транспортировки, хранения, производства, использования и утилизации. Энергосбережение - комплекс мер для обеспечения эффективного и рационального использования энергоресурсов.

В настоящее время самыми эффективными признаны следующие направления деятельности по энергосбережению:

1. Создание нормативной и правовой базы энергосбережения.

2. Создание необходимых экономических механизмов.

3. Создание финансовых механизмов энергосбережения.

4. Проведение политики ценообразования, которая отражает затраты на энергоресурсы, производимую продукцию, услуги и определяет уровень жизни населения.

5. Создание системы управления энергосбережением.

6. Создание информационной системы пропаганды проблем энергосбережения, обучения, переподготовки кадров, менеджеров, работающих в этой сфере.

Основа энергосбережения - рациональное использование энергоресурсов и сокращение их потерь. Во всех передовых странах широко применяется энергосберегающая политика.

Исходя из определения понятия энергосбережения как комплекса мер, направленных на эффективное использование энергии, возникает требование ограничения возможностей использования материальных ресурсов внешней среды, если речь идет о так называемых невозобновляемых первичных источниках энергии в виде органических минеральных горючих. Вполне понятно стремление многих стран в современных условиях к максимальному использованию, но на новых принципах, возобновляемых источников энергии - ветра, солнца, биомассы и т.д. Использование их позволит уже сегодня решить массу экологических проблем, что создает предпосылки к резервированию для потомков части запасов ископаемых топлив (если при этом их еще и не будут вывозить за рубеж), в том числе и для неэнергетических потребностей: производства химических продуктов, лекарств, всевозможных препаратов.

Под энергетической безопасностью понимается такое состояние государства, когда не испытывают недостатка во всех видах энергии все нуждающиеся в них потребители. В более широком аспекте –


  • это такое состояние топливно-энергетического комплекса, которое обеспечивает достаточное и надежное энергоснабжение страны, необходимое для устойчивого развития экономики и комфортных условий проживания населения в обычных условиях и минимизацию ущерба в ЧС.

  • - Это состояние общества поддерживать необходимый уровень национальной безопасности
Основными принципами энергетической безопасности являются:

  • Наличие энергоресурсов или запасов энергетического сырья

  • Резервы электрических и тепловых мощностей (не менее 15% по сравнению с пиковой нагрузкой)

  • Надежность энергетического оборудования

  • Подконтрольность энергосистемы страны государству

  • Если энергетика государства базируется на импорте энергоресурсов – закупки не должны осуществляться в одной стране . Доля каждого источника энергопоставок не должна превышать 50%

  • Энергосберегающая политика государства - правовое, организационное и финансово-экономическое регулирование деятельности в области энергосбережения. Примером осознания важности решения проблемы энергосбережения, является Закон Республики Беларусь «Об энергосбережении», принятый в 1998 году. Настоящим законом регулируются отношения, возникающие в процессе деятельности юридических и физических лиц, в сфере энергосбережения в целях повышения эффективности использования топливно-энергетических ресурсов, и устанавливаются правовые основы этих отношений. . Для осуществления энергосбережения на уровне государства постоянно разрабатываются программы по энергосбережению.

  • Республиканские – на 5 лет, начиная с 2001г.

  • Областные – на 1 год

  • Отраслевые научно-технические - бывают долгосрочные (на5 лет) и краткосрочные (на 1год)

  • Перед РБ стоит задача энергосбережения и снижения энергоемкости валового внутреннего продуктка.

  • Для решения этой задачи необходимо:

  • - создание системы подготовки специалистов в области энергосбережения, энергосберегающих технологий и энергетического менеджмента;

  • - обеспечить перестройку мышления общества в целом, радикально изменить его отношение к проблеме энерго- и ресурсосбережения.

Лекция 2

Энергетические ресурсы мира

Рассматриваемые вопросы:

1. Основные определения

2. Виды энергоресурсов и их классификация.

3. Структура и состояние мирового энергохозяйства

2.1. Энергетические ресурсы и их классификация

Согласно Закона Республики Беларусь «Об энергосбережении», который был принят 29 июня 1998 г. источником энергии являются энергетические ресурсы:

Энергетические ресурсы – это материальные объекты, в которых сосредоточена энергия, пригодная для практического использования человеком. Энергетическим ресурсом называют любой источник энергии, естественный или искусственно активированный. Энергетические ресурсы – носители энергии, которые используются в настоящее время или могут быть полезно использованы в перспективе .

топливно-энергетические ресурсы (ТЭР) – совокупность всех природных и преобразованных видов топлива и энергии, используемых в республике.Энергетические ресурсы классифицируются согласно следующей схеме (рис.1).

Первичные природные энергоресурсы - естественно образовавшиеся в результате геологического развития Земли или проявляющиеся через космические связи (излучение Солнца), делятся на невозобновляемые (уголь, нефть, природный газ, сланцы, торф) и возобновляемые (энергия рек, солнечная радиация, энергия приливов, биотопливо).

К возобновляемым относят ресурсы, восстанавливаемые природой (земля, растения, животные и т.д.), к невозобновляемым - ресурсы, ранее накопленные в природе, но в новых геологических условиях практически не образующиеся (нефть, уголь и другие запасы недр).

Вторичные энергетические ресурсы (ВЭР) – энергия, получаемая в ходе любого технологического процесса в результате недоиспользования первичной энергии в виде побочного продукта основного производства и не применяемая в этом энергетическом процессе. К данному виду ресурсов относятся: бытовые и промышленные отходы, горячие отработанные теплоносители, отработанные горючие органические вещества, отходы сельскохозяйственного производства.

Р и с.1. Структура энергетических ресурсов.


Одна из классификаций природных ресурсов – классификация по признаку исчерпаемости, в соответствии с которой энергетические ресурсы разделяют на исчерпаемые и неисчерпаемые (рис. 3) . В свою очередь, исчерпаемые можно разделить на возобновляемые и невозобновляемые .

К неисчерпаемым относятся космические, климатические, водные ресурсы.

Рис.2. Исчерпаемые и неисчерпаемые энергоресурсы.

Все неисчерпаемые источники энергии считаются возобновимыми.

По сути, во вселенной не существует неисчерпаемых энергоресурсов. Рано или поздно они иссякнут. Так, например, через 4.5 миллиарда лет наша звезда Солнце перейдет в очередную свою стадию эволюции и превратится в белый карлик. Такой переход именуется вспышка сверхновой звезды. При этом в космическое пространство будет излучен огромный поток энергии, который достигнет нашей планеты, уничтожит (сожжет) атмосферу Земли, испарятся океаны и Земля превратится в безжизненное космическое тело.

Однако в сравнении с человеческой жизнью и временем существования человеческой цивилизации такие источники считаются неисчерпаемыми. Таким образом, возобновляемыми источниками энергии называются источники, потоки энергии которых постоянно существуют или периодически возникают в окружающей среде и не являются следствием целенаправленной деятельности человека.

К возобновляемым энергоресурсам относят энергию:

Мирового океана в виде энергии приливов и отливов, энергии волн;


- ветра;

Морских течений;

Соленую;

Морских водорослей;

Вырабатываемую из биомассы;

Водостоков;

Твердых бытовых отходов;

Геотермальных источников.

Недостатком возобновляемых источников энергии является низкая степень ее концентрации. Но это в значительной степени компенсируется широким распространением, относительно высокой экологической чистотой и их практической неисчерпаемостью. Такие источники наиболее рационально использовать непосредственно вблизи потребителя без передачи энергии на расстояние. Энергетика, работающая на этих источниках, использует потоки энергии, уже существующие в окружающем пространстве, перераспределяет, но не нарушает их общий баланс.

Около 90% используемых в настоящее время энергоресурсов составляет невозобноляемые (уголь, нефть, газ, и т.д.). Это обусловлено их высоким энергетическим потенциалом, относительной доступностью их извлечения. Темпы добычи и потребления этих ресурсов обуславливают энергетическую политику. Наиболее часто используемые в настоящее время энергоресурсы называют традиционными, новые виды энергоресурсов, использование которых начато сравнительно недавно – альтернативными (энергетические ресурсы рек, водохранилищ и промышленных водостоков, энергию ветра, солнца, редуцируемого природного газа, биомассы (включая древесные отходы), сточных вод и твердых бытовых отходов).

В современном природопользовании энергетические ресурсы классифицируют на три группы

участвующие в постоянном обороте и потоке энергии (солнечная, космическая энергия и т.д.),

- депонированные энергетические ресурсы (нефть, газ, торф, сланцы и т.д.) и

- искусственно активированные источники энергии (атомная и термоядерная энергии).

С экономической точки зрения различают валовые, технические и экономические энергетическиересурсы.

Валовой ресурс представляет суммарную энергию, заключенную в данном видеэнергоресурса.

Технический ресурс это энергия, которая может быть получена из данного вида энергоресурса при существующем развитии науки и техники. Он составляет от доли процента до десятка процентов от валового, но постоянно увеличивается по мере усовершенствования энергетического оборудования и освоения новых технологий.

Экономический ресурс энергия, получение которой из данного вида ресурса экономически выгодно при существующем соотношении цен на оборудование, материалы и рабочую силу. Он составляет некоторую долю от технического и тоже увеличивается по мере развития энергетики.

Энергетические ресурсы принято характеризовать числом лет, в течение которых данного ресурса хватит для производства энергии на современном качественном уровне. Из доклада комиссии Мирового энергетического совета (1994 г.) при современном уровне потребления запасов угля хватит на 250 лет, газа – на 60 лет, нефти – на 40 лет. При этом по данным Международного института прикладного системного анализа, мировой спрос на энергоносители вырастет с 9,2 млрд. т в пересчете на нефть (конец 1990-х гг.) до 14,2–24,8 млрд. т в 2050 году.

Показатель энергоэффективности – научнообоснованная абсолютная или удельная величина потребления топливно-энергетических ресурсов (с учетом их нормативных потерь) любого назначения, установленная нормативнымидокументами.

Эффективность использования энергоресурсов определяется степенью преобразования их энергетического потенциала в конечную используемую продукцию или конечные потребляемые виды энергии и характеризуется коэффициентом использования энергоресурсов :

где η д коэффициент извлечения потенциального запаса энергоресурса (отношение добытого ко всему количеству ресурса),

η П коэффициент преобразования (отношение полученной полезной энергии ко всем подведенным энергоресурсам),η и коэффициент использования энергии (отношение использованной энергии к подведенной к потребителю энергии).

Для некоторых видов ископаемых энергоресурсов η д составляет:

для нефти  30,…40%, для газа  80%, для угля  40%. При сжигании топливаη п равняется 9498 %.

С понятием энергоэффективность сопряжены понятия эффективное и рациональное использование энергоресурсов.

Энергетический баланс – это система показателей, отражающих количественное соответствие между приходом и расходом энергоресурсов, распределение по типу и потребителям (см. рис. 3).

Рис. 3. Структура энергетического баланса.


Рациональное использование ресурсов – это система деятельности, призванная обеспечить экономическое использование ресурсов и их воспроизводство с учетом перспективных интересов развивающегося народного хозяйства и сохранения здоровья людей.

Эффективное использование ресурсов - использование всех видов энергии экономически оправданными, прогрессивными способами при существующем уровне развития техники и технологий (подразумевает вторичное использование ресурсов, сокращение потребления, энергосбережение, непревышениеэколгического порога устойчивости экосистем).

Пользователи топливно-энергетических ресурсов – субъекты хозяйствования независимо от форм собственности, зарегистрированные на территории Республики Беларусь в качестве юридических лиц или предпринимателей без образования юридического лица, а также другие лица, которые в соответствии с законодательством Республики Беларусь имеют право заключать хозяйственные договоры, и граждане, использующие топливно-энергетическиересурсы.

Производители топливно-энергетических ресурсов – субъекты хозяйствования независимо от форм собственности, зарегистрированные на территории Республики Беларусь в качестве юридических лиц, для которых любой из видов топливно-энергетических ресурсов, используемых в республике,являетсятоварнойпродукцией.

Под энергетикой или энергетической системой , следует понимать совокупность больших естественных (природных) и искусственных (созданных человеком) систем, предназначенных для получения, преобразования, распределения и использования в народном хозяйстве энергетических ресурсов всех видов.

Энергетика рассматривается как большая система, включающая в себя на правах подсистем части других больших систем.
Вторая трактовка энергосистемы , принятая среди энергетиков, следующая: энергетическая система – это совокупность взаимосвязанных электрических станций, подстанций, линий электропередачи, электрических и тепловых сетей, центров потребления электрической энергии и теплоты.
В составе энергетической системы, обеспечивающей потребности всей экономики в электрической и тепловой энергии, функционируют следующие большие системы :

электроэнергетическая система (электроэнергетика), в состав которой в качестве подсистемы входит теплоснабжающая система (теплоэнергетика);

система нефте- и газоснабжения;

система угольной промышленности;

ядерная энергетика;

нетрадиционная энергетика.

Производство электроэнергии обеспечивают электрические станции;преобразование – трансформаторы, транспорт;

распределение электрической энергии – линии электропередачи;потребление – различные приемники.

2.2 Виды топлива, характеристика и запасы

По определению Д. И. Менделеева, «топливом называется горючее вещество, умышленно сжигаемое для получения теплоты». Минеральное топливо - основной источник энергии в современном хозяйстве и важнейшее промышленное сырье. Переработка минерального топлива является базой формирования промышленных предприятий, в т. ч. нефтехимических, газохи-мических, торфобрикетных и т. п.

Топливо подразделяют на следующие четыре группы:

Твердое;

Газообразное;

Ядерное.

Самым первейшим видом твердого топлива были (а во многих местах остаются и в настоящее время) древесина и другие растения: солома, камыш, стебли кукурузы и т. п.

Первая промышленная революция, которая в XIX веке полностью преобразовала аграрные страны Европы, а затем и Америку, произошла в результате перехода от древесного топлива к ископаемому угольному. Потом пришла эра электричества.

Открытие электричества оказало огромное влияние на жизнь человечества и обусловило зарождение и рост крупнейших городов мира.

Применение нефти (жидкий вид топлива) и природного газа в сочетании с развитием электроэнергетики, а затем и освоение энергии атома позволили промышленно развитым странам осуществить грандиозные преобразования, итогом которых стало формирование современного облика Земли.

Таким образом, к твердому виду топлива относят:

Древесину, другие продукты растительного происхождения;

Уголь (с его разновидностями: каменный, бурый);

Торф;


- горючие сланцы.

Ископаемые твердые топлива (за исключением сланцев) являются продуктом разложения органической массы растений. Самый молодой из них торф , представляющий собой плотную массу, образовавшуюся из перегнивших остатков болотных растений. Следующими по «возрасту» являются бурые угли - землистая или черная однородная масса, которая при длительном хранении на воздухе частично окисляется (выветривается) и рассыпается в порошок. Затем идут каменные угли , обладающие, как правило, повышенной прочностью и меньшей пористостью. Органическая масса наиболее старых из них - антрацитов претерпела наибольшие изменения и на 93 % состоит из углерода. Антрацит отличается высокой твердостью.

Горючие сланцы представляют собой полезное ископаемое из группы твердыхкаустобиолитов, дающее при сухой перегонке значительное количество смолы, близкой по составу к нефти.

Жидкие виды топлива получают путем переработки нефти. Сырую нефть нагревают до 300 ... 370 °С, после чего полученные пары разгоняют на фракции, конденсирующиеся при различной температуре:

Сжиженный газ (выход около 1 %);

Бензиновую (около 15%, tк =30... 180°С);

Керосиновую (около 17 %, tк = 120 ... 135 °С);

Дизельную (около 18 %, tк = 180 ... 350 °С).

Жидкий остаток с температурой начала кипения 330 - 350 °С называется мазутом.

Газообразными видами топлива являются природный газ, добываемый как непосредственно, так и попутно с добычей нефти, называемый попутным. Основным компонентом природного газа является метан СН4 и в небольшом количестве азот N2, высшие углеводороды СnНm, двуокись углерода СО2. Попутный газ содержит меньше метана, чем природный, но больше высших углеводородов, и поэтому выделяет при сгорании больше теплоты.

В промышленности и, особенно в быту, находит широкое распространение сжиженный газ , получаемый при первичной переработке нефти. На металлургических заводах в качестве попутных продуктов получают коксовый и доменный газы . Они используются здесь же на заводах для отопления печей и технологических аппаратов. В районах расположения угольных шахт своеобразным «топливом» может служить метан , выделяющийся из пластов при их вентиляции . Газы, получаемые путем газификации (генераторные) или путем сухой перегонки (нагрев без доступа воздуха) твердых топлив, в большинстве стран практически вытеснены природным газом, однако в настоящее время снова возрождается интерес к их производству и использованию.

В последнее время все большее применение находит биогаз - продукт анаэробной ферментации (сбраживание) органических отходов (навоза, растительных остатков, мусора, сточных вод и т. д.).

Ядерным топливом является уран. Об эффективности использования его показывает работа первого в мире атомного ледокола «Ленин» водоизмещением 19 тыс. т, длиной 134 м, шириной 23,6 м, высотой 16,1 м, осадкой 10,5 м, со скоростью 18 узлов (около 30 км/ч). Он был создан для проводки караванов судов по Северному морскому пути, толщина льда по которому достигала 2 и более метров. В сутки он потреблял 260-310 граммов урана. Дизельному ледоколу для выполнения такого же объема работы, которую выполнял ледокол «Ленин», потребовалось бы 560 т дизтоплива.

Анализ оценки обеспеченности ТЭР показывает, что наиболее дефи-цитным видом топлива является нефть. Ее хватит по разным источникам на 250 лет. Затем, через 35-64 года, истощатся запасы горючего газа и урана. Лучше всего обстоит дело с углем, запасы которого в мире достаточно велики, и обеспеченность углем составит 218-330 лет.

2.2 Условное топливо, калорийность, энергетический потенциал.

Экономические расчеты, сравнение показателей топливоиспользующих устройств друг с другом и планирование необходимо осуществлять на единой базе. Поэтому введено понятие так называемого условного топлива.

Условное топливо представляет собой единицу учета органического топлива, применяемую для сопоставления эффективности различных видов топлива и суммарного учета. Использование условного топлива особенно удобно для сопоставления экономичности различных теплоэнергетических установок.

В качестве единицы условного топлива применяется 1 кг топлива с теплотой сгорания 7000 ккал/кг (29,3 МДж/кг), что соответствует хорошему малозольному сухому углю. Для сравнения укажем, что бурые угли имеют теплоту сгорания менее 24 МДж/кг, а антрациты и каменные угли - 23-27 МДж/кг. Соотношение между условным топливом и натуральным выражается формулой

Вт= (Qнр / 7000) Вн = Э Вн,

где Вт - масса эквивалентного количества условного топлива, кг;

Вн - масса натурального топлива, кг (твердое и жидкое топливо) или м3 -газообразного;

Qнр - низшая теплота сгорания данного натурального топлива, ккал/кгили ккал/м3.

СоотношениеЭ = Qнр / 7000

называется калорийным коэффициентом , и его принимают для:

Нефти - 1,43;

Природного газа- 1,15;

Торфа- 0,34-0,41 (в зависимости от влажности);

Торфобрикетов - 0,45 -0,6 (в зависимости от влажности);

Дизтоплива - 1,45;

Мазута- 1,37.

Теплотворная способность различных видов топлива , ккал/кг, составляет примерно:

нефть - 10 000 (ккал/кг);

природный газ - 8 000 (ккал/ м3);

каменный уголь - 7000(ккал/кг);

дрова влажностью 10% - 3900(ккал/кг);

40% - 2400(ккал/кг);

торф влажности 10% - 4100(ккал/кг);

40% - 2500(ккал/кг);

Параметром, определяющим возможность использования источника энергии являетсяЭнергетический потенциал . Он выражается в единицах энергии Дж или кВт час. Энергетический потенциал энергоресурсов Земли, измеряемый в эксаджоулях , (эДж=10 18 Дж ), оценивается следующими величинами :


  • ядерная энергия деления 1,97 · 10 6

  • геотермальная энергия 2,94 · 10 6

  • энергия Солнца на уровне Земли, за 1 год 2,41 · 10 6

  • химическая энергия химического топлива 5,21 · 10 5

  • термоядерная энергия 3,60 · 10 5

  • энергия приливов, за 1 год 2,52 · 10 5

  • энергия ветра, за 1 год 6,12 · 10 3

  • биоэнергия лесов, за 1 год 1,46 · 10 3

  • энергия рек, за 1 год 1,19 · 10 2
2. 3 Энергетические ресурсы мира

Структура мирового энергохозяйства на сегодня сложилась так, что 80 % потребляемой электроэнергии получается при сжигании топлива на электростанциях, где химическая энергия топлива превращается сначала в тепло, теплота – в работу, а работа – в электричество. Ощутимый процент дает и гидроэнергетика (около 15 %), остальное покрывается другими источниками, в основном атомными электростанциями. Потребности человека растут, людей становится все больше и это вызывает гигантские объемы производства энергии и темпы роста ее потребления. Сегодня традиционные источники энергии (различные топлива, гидроресурсы) и технологии их использования уже не способны обеспечивать требуемый уровень энерговооруженности общества, потому что это невозобновляемые источники и их количество стремительно сокращается. И хотя разведанные запасы природных топлив очень велики, проблема истощения природных кладовых при нынешних и прогнозируемых темпах их разработки переходит в реальную и недалекую перспективу. Уже сегодня ряд месторождений из-за истощения оказывается непригодным для промышленной разработки, и за нефтью и газом, например, приходится идти на труднодоступные, отдаленные территории, на океанские шельфы и т.п. Серьезные прогнозисты доказывают, что при сохранении нынешних объемов и темпов роста энергопотребления в 3 … 5 % (а они без сомнения будут еще выше) запасы органических топлив полностью иссякнут через 70 – 150 лет.

Ограниченность запасовневозобновляемых ресурсов, используемых для получения электроэнергии даже с учетом экономии, отражена в табл.2.1. Развитие современных технологий требует повышение уровня использования электроэнергии. Кроме этого, необходимо учесть, что темпы роста населения позволяют прогнозировать, что лет через 40 на Земле будет жить 12 млрд. человек, поэтому столь жестко стоят проблемы энергосбережения.

Таблица 2.1. Энергетические ресурсы мира


Электроэнергетика является важнейшей отраслью экономики любой страны, поскольку ее продукция (электрическая энергия) относится к универсальному виду энергии. Ее легко можно передавать на значительные расстояния, делить на большое количество потребителей. Без электрической энергии невозможно осуществить многие технологические процессы, как невозможно представить нашу повседневную жизнь без отопления, освещения, охлаждения, транспорта, телевизора, холодильника, стиральной машины, пылесоса, утюга, использования современных средств связи (телефон, телеграф, телефакс, ЭВМ), которые также потребляют электроэнергию.

В большинстве развитых зарубежных стран электрическая составляющая всего топливно-энергетического комплекса достигает 3540%, а к началу XXI века превысила 50%. Электрическая энергия внедряется практически во все новые сферы промышленности, сельского хозяйства и быта.

В США производится около 2,5 трлн. кВт·ч электроэнергии, в СНГ – около 1,75 трлн. кВт·ч. Общая мощность электростанции в США составляет 660 млн. кВт·ч., в СНГ – около 350 млн. кВт·ч., причем 30 % из них в США находится в горячем резерве. В СНГ горячего резерва нет, а холодный составляет 68% при нормативе – 13%.Степень же электрической вооруженности в республике Беларусь составляет 22%, что значительно ниже показателей не только развитых стран, но среднемирового уровня (27%).

Хотя последние 25 лет развитые страны перестали наращивать потребление энергии на душу населения, рост потребления остается высоким за счет наращивания энергопотребления на душу населения в развивающихся странах. При нынешних темпах рост электроэнергетики будет идти еще долго, в том числе и нашей.

Энергия не возникает из ничего и никуда не исчезает, она может только переходить из одного вида в
другой ( сохранения энергии). связывает все явления природы в одно целое, является
общей характеристикой состояния физических тел и физических полей.
Вследствие существования закона сохранения энергии понятия «энергия» связывает все явления природы.
В физике понятие энергия обычно обозначается латинской буквой Е.
В системе СИ энергия измеряется в джоулях. Кроме этих основных единиц измерения на практике используется
очень много других удобных при конкретном использовании единиц. В атомной и ядерной физики а также в физике элементарных частиц понятие энергию измеряют электрон-вольтами, в химии калориями, в физике твердого тела градусами Кельвина, в оптике обращенными сантиметрами, в квантовой химии в самосогласованного.

Виды энергии.Энергетические системы

Согласно различных форм движения материи, различают несколько типов энергии: механическая, электромагнитная, химическая, ядерная,тепловая, гравитационная и др. Это деление достаточно условно. Так химическая энергия состоит из кинетической энергии движения электронов, их взаимодействия и взаимодействия с атомами.
Кроме того,по понятию различают энергию внутреннюю и энергию в поле внешних сил. Внутренняя энергия равна сумме кинетической энергии движения молекул и потенциальной энергии взаимодействия молекул между собой. Внутренняя энергия изолированной системы является постоянной.
В ризномантнитних физических процессах различные виды энергии могут превращаться друг в другой. Например, ядерная энергия в атомных электростанциях превращается сначала во внутреннюю тепловую энергию пара, вращающего турбины (механическая энергия), что в свою очередь индуцируют электрический ток в генераторах (электрическая энергия), который используется для освещения (энергия электромагнитного поля) и т.д.
Энергия системы однозначно зависит от параметров, характеризующих ее состояние. В случае непрерывного среды вводят понятие плотности .

История развития понятие энергии

Понятие энергии состояло в физике на протяжении многих веков. Его понимание все менялось. Впервые термин энергия в современном физическом смысле применил в 1808 году Томас Янг. К тому употреблялся термин «жизненная сила» (лат. vis viva), который еще в 17-м веке ввел в обращение Лейбниц, определив его как произведение массы на квадрат скорости.
В 1829 году Кориолиса впервые применил термин кинетическая энергия в современном смысле, а срок потенциальная энергия был введен Уильямом Рэнкин в 1853 году. К тому времени получены в исследованиях в различных областях науки данные начали складываться в общую картину. Благодаря опытам Джоуля, Майера, Гельмгольца прояснилось вопросы преобразования механической энергии в тепловую. В одной из первых работ «О сохранении силы» (1847) Гельмгольц, следуя идее единства природы, математически обосновал сохранения энергии
и положение о том, что живой организм является физико-химическим средой, в которой указанный закон точно выполняется. Гельмгольц сформулировал «принцип сохранения силы» и невозможность Perpetuum Mobile . Эти открытия позволили сформулировать первый закон термодинамики или понятие сохранения энергии. Понятие энергии стало центральным в понимании физических процессов. Вскоре естественным образом в понятие энергии вписалась термодинамика химических реакций и теория электрических и электромагнитных явлений.
С построением теории относительности к понятию энергии добалося новое понимание. Если раньше
потенциальная энергия определялась с точностью до произвольной постоянной, то теория Эйнштейна установила
связь энергии с массой.

Квантовая механика обогатила понятие энергии квантованием — для определенных физических систем энергия
может принимать лишь дискретные значения. Кроме того принцип неопределенности установил границы точности
измерения энергии и ее взаимосвязь с тем. Теорема Нетер продемонстрировала, что закон сохранения энергии
следует из принципа однородности времени, по которому физические процессы в одинаковых системах протекают
одинаково, даже если они начинаются в разные моменты времени.

Теория относительности.Энергетические системы

Энергия тела зависит от системы отсчета, т.е. неодинакова для разных наблюдателей. Если тело движется со
скоростью v относительно какого наблюдателя, то для другого наблюдателя, движущегося с той же скоростью, оно
покажется неподвижным. Соответственно, для первого кинетическая энергия тела будет равна
(исходя из законов классической механики) т v2/2′ где m — масса тела, а для другого — нулю.
Эта зависимость энергии от системы отсчета сохраняется также в теории относительности. Для преобразований, происходящих с энергией при переходе от одной инерциальной системы отсчета к другой используется сложная математическая конструкция — тензор энергии-импульса.
Энергия тела зависит от скорости уже не так как в ньютоновской физике, а иначе:
квантовая механика
Тогда, как в классической физике понятие энергия любой системы меняется непервно и может принимать произвольных значений, Квантовая теория утверждает, что энергия микрочастиц, привязанных силой взаимодействия с другими микрочастицами в ограниченных областей пространства, может приобретать только определенных дискретных значений.
Так, атомы излучают энергию в виде дискретных порций — световых квантов, или фотонов.
Оператором энергии в квантовой механике является гамильтониан. В стационарных состояниях квантовых систем энергия может иметь только те значения, которые соответствуют собственным значением гамильтониана. Для локализованных состояний энергия может иметь только определенные дискретные.

Энергия (от греч. energeie - действие, деятельность) представляет собой общую количественную меру движения и взаимодействия всех видов материи. Это способность к совершению работы, а работа совершается тогда, когда на объект действует физическая сила (давление или гравитация). Работа- это энергия в действии.

Тепловая энергия широко используется на современных производствах и в быту в виде энергии пара, горячей воды, продуктов сгорания топлива.

Электрическая энергия является одним из наиболее совершенных видов энергии в виду ряда достоинств.

Электрическая энергия является наиболее чистой формой энергии и может быть получена из большого многообразия первичных источников (например, уголь, нефть, газ, энергия воды и атомная энергия). Электрическая энергия имеет ряд неоспоримых преимуществ по сравнению с другими видами производной энергии – возможность получения практически любых количеств энергии как от элемента размером со спичечную головку, так и от турбогенераторов мощностью более 1000 МВт, сравнительная простота ее передачи на расстояние и легкость преобразования в энергию других видов. Основная проблема - это ее хранение.

Она более эффективна с точки зрения использования, чем ископаемое топливо, поскольку имеет широко известные преимущества: обеспечение чистоты, удобство управления, доступность. Электроэнергия может быть использована значительно более эффективно и значительно более целенаправленно, чем энергия сжигаемого топлива. Электрические нагревательные системы характеризуются высокой технической эффективностью, и, несмотря на более высокую стоимость энергии по сравнению с энергией других источников, они более экономичны вследствие более низких эксплуатационных расходов.

Электрическая и тепловая энергия производятся на:

- тепловых электрических станциях на органическом топливе (ТЭС) с использованием в турбинах водяного пара – (паротурбинные установки – ПТУ), продуктов сгорания – (газотурбинные установки – ГТУ), их комбинаций – (парогазовые установки – ПГУ);

- гидравлических электрических станциях (ГЭС), использующих энергию падающего потока воды, течения, прилива;

- атомных электрических станциях (АЭС), использующих энергию ядерного распада.

Тепловые и атомные электростанции. Типовые схемы ТЭС и АЭС. Паротурбинные конденсационные электростанции и теплоэлектроцентрали (ТЭЦ) с комбинированной выработкой тепла и электрической энергии.

По виду вырабатываемой энергии:

· тепловые электростанции, вырабатывающие только электроэнергию,- конденсационные электростанции (КЭС);

· тепловые электростанции, вырабатывающие электрическую и тепловую энергию,- теплоэлектроцентрали (ТЭЦ).

По виду теплового двигателя:

· электростанции с паровыми турбинами - паротурбинные ТЭС и АЭС;

· электростанции с газовыми турбинами - газотурбинные ТЭС;

· электростанции с парогазовыми установками - парогазовые ТЭС;

Тепловые электростанции (ТЭС) вырабатывают электроэнергию в результате преобразования тепловой энергии, которая выделяется при сжигании органического топлива (угля, нефти, газа).

В машинном зале тепловой электростанции установлен котел с водой.

При сгорании топлива вода в котле нагревается до нескольких сот градусов и превращается в пар.

Пар под давлением вращает лопасти турбины, турбина в свою очередь вращает генератор.

Генератор вырабатывает электрический ток.

Электрический ток поступает в электрические сети и по ним поступает на заводы, в школы, дома, больницы.

Передача электроэнергии от электростанций по линиям электропередачи осуществляется при напряжениях 110-500 киловольт, то есть значительно превышающих напряжения генераторов.

Повышение напряжения необходимо для передачи электроэнергии на большие расстояния.

Затем необходимо обратное понижение напряжения до уровня, удобного потребителю.

Преобразование напряжения происходит в электрических подстанциях с помощью трансформаторов.

А тепло в виде горячей воды поступает из ТЭЦ по теплотрассам.

Градирня - устройство для охлаждения воды на электростанции атмосферным воздухом.

Котел паровой - закрытый агрегат для получения пара на электростанции посредством нагревания воды. Нагрев воды осуществляется посредством сжигания топлива.

ЛЭП - линия электропередачи. Предназначена для передачи электричества. Различают воздушные ЛЭП (провода, протянутые над землей) и подземные (силовые кабели).

Рис.11 – Принципиальные схемы ТЭС (а) и ТЭЦ (б)

В настоящее время на ТЭС и ТЭЦ наряду с паротурбинными установками (ПТУ) получают распространение парогазовые установки (ПГУ), работающие по комбинированной схеме.

В первой ступени ПГУ с газовой турбиной в качестве первичного источника энергии и рабочего тела используют природный газ, а вторичным рабочим телом являются продукты сгорания. Во второй ступени источником энергии служат выхлопные газы турбины, а рабочим телом – пар, генерируемый в парогенераторе с их помощью.

Атомные электроcтанции.

Такие электростанции действуют по такому же принципу, что и ТЭЦ, но используют для парообразования энергию, получающуюся при радиоактивной распаде. В качестве топлива используется обогащенная руда урана.

Рис. 12. Принципиальная схема АЭС.

По сравнению с тепловыми и гидроэлектростанциями атомные электростанции имеют серьезные преимущества: они требуют малое количество топлива, не нарушают гидрологических режим рек, не выбрасывают в атмосферу загрязняющие ее газы. Основной процесс, идущий на атомной электростанции - управляемое расщепление урана-235, при котором выделяется большое количество тепла. Главная часть атомной электростанции - ядерный реактор, роль которого заключается в поддержании непрерывной реакции расщепления.

Ядерное топливо - руда, содержащая 3% урана 235; ею заполняются длинные стальные трубки - тепловыделяющие элементы (ТВЭЛы). Если много ТВЭЛов разместить поблизости друг от друга, то начнется реакция расщепления. Чтобы реакцию можно было контролировать, между ТВЭЛами вставляют регулирующие стержни; выдвигая и вдвигая их, можно управлять интенсивностью распада урана-235. Комплекс неподвижных ТВЭЛов и подвижных регуляторов и есть ядерные реактор. Тепло, выделяемое реактором, используется для кипячения воды и получения пара, который приводит в движение турбину атомной электростанции, вырабатывающую электричество.

33. Преобразования солнечной энергии в тепловую и электрическую. Ветроэнегетика и гидроэнергетика.

Основным направлением использования солнечной энергии является теплоснабжение. Для прямого преобразования солнечной энергии в тепловую разработаны и широко используются на практике установки солнечного теплоснабжения (СТО) для различных целей (горячее водоснабжение, отопление и кондиционирование воздуха в жилых, общественных, санаторно-курортных зданиях, подогрев воды в плавательных бассейнах и различных процессах сельскохозяйственного производства).

По данным метеорологов в Республике Беларусь 150 дней в году пасмурно, 185 дней - с переменной облачностью и 30 - ясных, а всего число часов солнечного сияния в Беларуси достигает 1200 часов на севере страны и 1300-на юге.

Солнечная электростанция представляет собой сооружение, состоящее из множества солнечных коллекторов, ориентирующихся на Солнце. Каждый коллектор передает солнечную энергию жидкости-теплоносителю, которая, превратившись в пар, от всех коллекторов собирается в центральной энергостанции и поступает на турбину энергогенератора.

Рисунок 13 - Последовательность приемников солнечного излучения

в порядке возрастания их эффективности и стоимости

Основным элементом солнечной нагревательной системы является приемник, в котором происходит поглощение солнечного излучения и передача энергии жидкости. На рисунке 13 схематически изображены различные варианты приемников солнечной энергии. Опыт эксплуатации этих установок показывает, что в системах солнечного горячего водоснабжения может быть замещено 40-60 % годовой потребности в органическом топливе в зависимости от района расположения при нагреве воды до 40 ... 60 °С.

а) открытый резервуар на поверхности земли; б) открытый резервуар, теплоизолированный от земли; в) черный резервуар; г) черный резервуар с теплоизолированным дном; д) закрытые черные нагреватели,

е) металлические проточные нагреватели со стеклянной крышкой;

ж) металлические проточные нагреватели с двумя стеклянными крышками; з) то же, с селективной поверхностью; и) то же, с вакуумом.

Воздухонагреватель представляет собой приемник, в котором имеется пористая или шероховатая черная поглощающая поверхность, нагревающая поступающий воздух, который затем подается к потребителю.

Солнечный коллектор включает в себя приемник , поглощающий солнечное излучение, и концентратор , представляющий собой оптическую систему, собирающую солнечное излучение и направляющую его на приемник. Концентратор представляет собой чаще всего зеркало параболической формы, в фокусе которого располагается приемник излучения. Он постоянно вращается, обеспечивая ориентацию на Солнце.

Фотоэлектрические преобразователи представляют собой устройства, действие которых основано на использовании фотоэффекта, в результате которого при освещении вещества светом происходит выход электронов из металлов (фотоэлектрическая эмиссия или внешний фотоэффект), перемещение зарядов через границу раздела полупроводников с различными типами проводимости (вентильный фотоэффект), изменение электрической проводимости (фотопроводимость). Методы фотоэлектри-ческого преобразования солнечной энергии в электрическую находит применение для питания потребителей в широком интервале мощностей: от мини-генераторов для часов и калькуляторов мощностью от несколько ватт до центральных электростанций мощностью несколько мегаватт.

Ветроэнергетика представляет собой область техники, использующую энергию ветра для производства энергии, а устройства, преобразующие энергию ветра в полезную механическую, электрическую или тепловую виды энергии, называются ветроэнергетическими установками (ВЭУ), или ветроустановками , и являются автономными

Энергия ветра в механических установках, например на мельницах и в водяных насосах, используется уже несколько столетий. После резкого скачка цен на нефть в 1973 г. интерес к таким установкам резко возрос. Большая часть существующих установок построена в конце 70-х - начале 80-х годов на современном техническом уровне при широком использовании последних достижений аэродинамики, механики, микроэлектроники для контроля и управления ими. Ветроустановки мощностью от нескольких киловатт до нескольких мегаватт производятся в Европе, США и других частях мира. Большая часть этих установок используется для производства электроэнергии, как в единой энергосистеме, так и в автономных режимах.

Одно из основных условий при проектировании ветроустановок - обеспечение их защиты от разрушений очень сильными случайными порывами ветра. В каждой местности в среднем раз в 50 лет бывают ветры со скоростью, в 5-10 раз превышающей среднюю, поэтому ветроустановки приходиться проектировать с большим запасом прочности. Максимальная проектная мощность ветроустановки определяется для некоторой стандартной скорости ветра, обычно принимаемой равной 12 м/с.

Ветроэнергетическая установка состоит из ветроколеса, генератора электрического тока, сооружения для установки на определенной высоте от земли ветряного колеса, системы управления параметрами генерируемой электроэнергии в зависимости от изменения силы ветра и скорости вращения колеса.

Ветроустановки классифицируются по двум основным признакам: геометрии ветроколеса и его положению относительно направления ветра. Если ось вращения ветроколеса параллельна воздушному потоку, то установка называется горизонтально-осевой, если перпендикулярно-вертикально-осевой.

Принцип действия ветроэнергетической установки состоит в следующем. Ветряное колесо, воспринимая на себя энергию ветра, вращается и посредством пары конических шестерен и с помощью длинного вертикального вала передает свою энергию на нижний горизонтальный трансмиссионный вал и далее посредством второй пары конических шестерен и ременной передачи - электрическому генератору или другому механизму.

Поскольку периоды безветрия неизбежны, то для исключения перебоев в электроснабжении ВЭУ должны иметь аккумуляторы электрической энергии или быть запараллелены, на случаи безветрия, с электроэнергетическими установками других типов.

Энергетическая программа Республики Беларусь до 2010 г основными направлениями использования ветроэнергетических ресурсов на ближайший период предусматривает их применение для привода насосных установок и в качестве источников энергии для электродвигателей. Эти области применения характеризуются минимальными требованиями к качеству электрической энергии, что позволяет резко упростить и удешевить ветроэнергетические установки. Особенно перспективным считается их использование в сочетании с малыми гидроэлектростанциями для перекачки воды. Применение ветроэнергетических установок для водоподъёма, электроподогрева воды и электроснабжения автономных потребителей к 2010 г. предполагается довести до 15 МВт установленной мощности, что обеспечит экономию 9 тыс. т у т. в год.

Гидроэлектростанция.

Гидроэнергетика представляет отрасль науки и техники по использованию энергии движущийся воды (как правило, рек) для производства электрической, а иногда и механической энергии. Это наиболее развитая область энергетики на возобновляемых ресурсах.

Гидроэлектростанция представляет собой комплекс различных сооружений и оборудования, использование которых позволяет преобразовывать энергию воды в электроэнергию. Гидротехнические сооружения обеспечивают необходимую концентрацию потока воды, а дальнейшие процессы производятся при помощи соответствующего оборудования.

Гидроэлектростанции возводятся на реках, сооружая плотины и водохранилища.

В гидроэлектростанции кинетическая энергия падающей воды используется для производства электроэнергии. Турбина и генератор преобразовывают энергию воды в механическую энергию, а затем - в электроэнергию. Турбины и генераторы установлены либо в самой дамбе, либо рядом с ней.

Рис. 14. Принципиальная схема гидроэлектростанции.



Понравилась статья? Поделиться с друзьями: