Кинетическая и потенциальная энергия тела. Потенциальная и кинетическая энергия

Кинетическая энергия - это энергия движения тела. Соотвественно, если у нас есть какой-то объект, обладающий хоть какой-то массой и хоть какой-то скоростью, то он и обладает кинетической энергией. Однако относительно разных систем отсчета эта кинетическая энергия у одного и того же объекта может быть разной.

Пример. Есть бабушка, которая относительно земли нашей планеты находится в состоянии покоя, то есть не движется и, скажем, сидит на остановке в ожидании своего автобуса. Тогда относительно нашей планеты ее кинетическая энергия равна нулю. Но если посмотреть на эту же бабушку с Луны или с Солнца, относительно которых можно наблюдать движение планеты и, соответственно, этой бабушки, которая находится на нашей планете, то бабушка уже будет обладать кинетической энергией относительно упомянутых небесных тел. И тут приезжает автобус. Эта самая бабушка быстро встает и бежит занимать положенное ей место. Теперь относительно планеты она уже не в покое, а вполне себе движется. А значит и обладает кинетической энергией. И чем толще бабушка и быстрее, тем больше ее кинетическая энергия.

Есть несколько фундаментальных видов энергии - основных. Расскажу, например, про механические. К ним относятся энергия кинетическая, которая зависит от скорости и массы объекта, энергия потенциальная, которая зависит от того, где вы возьмете нулевой уровень потенциальной энергии, и от того положения, где находится этот объект относительно нулевого уровня потенциальной энергии. То есть потенциальная энергия - энергия, зависящая от положения объекта. Эта энергия характеризует работу, совершаемую полем, в котором находится объект, по его перемещению.

Пример. Несете вы в руках огромную коробку и падаете. Коробка лежит на полу. Выходит, что нулевой уровень потенциальной энергии у вас будет находится, соответственно, на уровне пола. Тогда верхняя часть коробки будет обладать большей потенциальной энергией, так как она находится выше пола и выше нулевого уровня потенциальной энергии.

Глупо говорить про энергию, не упомянув закон о ее сохранении. Таким образом, по закону сохранения энергии, эти два ее вида, описывающих состояние объекта, ни откуда не берутся и никуда не исчезают, а только переходят друг в друга.

А вот и пример. Падаю я с высоты дома, изначально имея потенциальную энергию относительно земли в момент перед прыжком, а моя кинетическая энергия пренебрежимо мала, поэтому можем приравнять её к нулю. Вот я отрываю ножки от карниза и моя потенциальная энергия начинает уменьшаться, так как высота, на которой я нахожусь, становится все меньше и меньше. В этот же момент при падении вниз я постепенно приобретаю кинетическую энергию, так как падаю вниз все с большей скоростью. В момент падения я уже обладаю максимальной кинетической энергией, но потенциальная равно нулю, такие дела.

>>Физика 10 класс >>Физика: Кинетическая энергия и ее изменение

Кинетическая энергия

Кинетическая энергия - это энергия тела, которую оно имеет вследствие своего движения.

Если говорить простым языком, то под понятием кинетической энергии следует подразумевать только ту энергию, которую имеет тело при движении. Если же тело пребывает в состоянии покоя, то есть, совершенно не движется, тогда кинетическая энергия будет равняться нулю.

Кинетическая энергия равняется той работе, которую она должна затратить, чтобы вывести тело из состояния покоя в состояние движения с какой-то скоростью.

Следовательно, кинетическая энергия является разностью между полной энергией системы и её энергией покоя. Иначе говоря, что кинетическая энергия будет частью полной энергии, которая обусловленная движением.

Давайте попробуем разобраться в понятии кинетической энергии тела. Для примера возьмем движение шайбы по льду и попробуем понять связь между величиной кинетической энергии и работой, которая должна быть выполнена, чтобы вывести шайбу из состояния покоя и привести ее в движение, имеющее некоторую скорость.

Пример

Играющий на льду хоккеист, ударив клюшкой по шайбе сообщает ей скорость, а так и кинетическую энергию. Сразу после удара клюшкой, шайба начинает очень быстрое движение, но постепенно ее скорость замедляется и наконец, она совсем останавливается. Это значит, что уменьшение скорости явилось результатом силы трения, происходящей между поверхностью и шайбой. Тогда сила трения будет направлена против движения и действия этой силы сопровождаются перемещением. Тело же использует имеющую механическую энергию, выполняя работу против силы трения.

Из этого примера мы видим, что кинетическая энергия будет той энергией, которую тело получает в результате своего движения.

Следовательно, кинетическая энергия тела, имеющая определенную массу, будет двигаться со скоростью равной той работе, которую должна выполнить сила, приложенная к покоящемуся телу, чтобы сообщить ему данную скорость:

Кинетическая энергия является энергией движущегося тела, которая равняется произведению массы тела на квадрат его скорости, деленной пополам.


Свойства кинетической энергии

К свойствам кинетической энергии относятся: аддитивность, инвариантность по отношению к повороту системы отсчета и сохранение.

Такое свойство, как аддитивность являет собой кинетическую энергию механической системы, которая слагается из материальных точек и будет равна сумме кинетических энергий всех материальных точек, которые входят в эту систему.

Свойство инвариантности по отношению к повороту системы отсчета обозначает, что кинетическая энергия не зависит от положения точки и направления её скорости. Ее зависимость распространяется лишь от модуля или от квадрата её скорости.

Свойство сохранения обозначает, что кинетическая энергия при взаимодействиях, изменяющих лишь механические характеристики системы, совершенно не изменяется.

Это свойство неизменно по отношению к преобразованиям Галилея. Свойства сохранения кинетической энергии и второго закона Ньютона будет вполне достаточно, для выведения математической формулы кинетической энергии.

Соотношение кинетической и внутренней энергии

Но существует такая интересная дилемма, как то, что кинетическая энергия может быть зависимой от того, с каких позиций рассматривать эту систему. Если, например, мы берем объект, который можно рассмотреть только под микроскопом, то, как единое целое, это тело неподвижно, хотя существует и внутренняя энергия. При таких условиях кинетическая энергия появляется только тогда, когда это тело движется, как единое целое.

То же тело, если рассматривать на микроскопическом уровне, обладает внутренней энергией, обусловленной движением атомов и молекул, из которых оно состоит. А абсолютная температура такого тела будет пропорциональна средней кинетической энергии такого движения атомов и молекул.

Открытие закона сохранения импульса, который утверждает, что векторная сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная, показало, что механическое движение тел имеет количественную меру, сохраняющуюся при любых взаимодействиях тел. Этой мерой является импульс. Однако только с помощью этого закона не получится дать полное объяснение всех закономерностей движения и взаимодействия тел.

Рассмотрим пример. Пуля массой 9 грамм, находящаяся в состоянии покоя, абсолютно безвредна. Но во время выстрела при соприкосновении с препятствием пуля деформирует его. Очевидно, что такой разрушительный эффект получается в результате того, что пуля обладает особой энергией.

Рассмотрим другой пример. Два одинаковых пластилиновых шара движутся навстречу друг другу с одинаковыми скоростями. При столкновении они останавливаются и соединяются в одно тело.

Сумма импульсов шаров до столкновения и после столкновения одинакова и равна нулю, закон сохранения импульсов выполняется. Что же происходит с пластилиновыми шарами при их столкновении, кроме изменения скорости движения? Шары деформируются и нагреваются.

Повышение температуры тел при столкновении можно наблюдать, например, при ударе молотка по свинцовому или медному стержню. Изменение температуры тела свидетельствует об изменениях скоростей хаотичного теплового движения атомов, из которого состоит тело. Следовательно, механическое движение не исчезло бесследно, оно превратилось в другую форму движения материи.

Вернёмся к вопросу, который мы ставили выше. Имеется ли в природе мера движения материи, сохраняющаяся при любых превращениях одной формы движения в другую? Опыты и наблюдения показали, что такая мера движения в природе существует. Её назвали энергией.

Энергией называется физическая величина, являющаяся количественной мерой различных форм движения материи.

Для точного определения энергии как физической величины необходимо найти её связь с другими величинами, выбрать единицу измерения и найти способы её измерения.

Механической энергией называется физическая величина, которая является количественной мерой механического движения.

В физике в качестве такой количественной меры поступательного механического движения при возникновении его из других форм движения или превращении в другие формы движения принята величина, равная половине произведения массы тела на квадрат скорости его движения. Эта физическая величина называется кинетической энергией тела и обозначается буквой Е с индексом к :

Е к = mv 2 / 2

Так как скорость является величиной, зависящей от выбора системы отсчёта, значение кинетической энергии тела зависит от выбора системы отсчёта.

Существуеттеорема о кинетической энергии. «Работа приложенной к телу равнодействующей силы равна изменению его кинетической энергии»:

А = Е к2 -Е к1

Данная теорема будет справедлива и когда тело движется под действием константной силы, и когда тело движется по действием изменяющейся силы, направление которой не совпадает с направлением перемещения. Кинетическая энергия – это энергия движения. Получается, кинетическая энергия тела массой m, движущегося со скоростью v равна работе, которую должна совершить сила, приложенная к покоящемуся телу, чтобы сообщить ему эту скорость:

А = mv 2 / 2 = Е к

Если тело будет двигаться со скоростью v, то для его полной остановки необходимо совершить работу:

А = -mv 2 / 2 = -Е к

За единицу работы в международной системе принимается работа, совершаемая силой 1 Ньютон на пути 1 метр при движении по направлению вектора силы. Эта единица измерения работы называется Джоулем.

1 Дж = 1 кг · м 2 / c 2

Так как работа равна изменению энергии, для измерения энергии используется та же единица измерения, что и для измерения работы. Единица энергии в СИ – 1Дж.

Остались вопросы? Не знаете, что такое кинетическая энергия?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

С понятием работы тесно связано другое фундаментальное физическое понятие – понятие энергии. Поскольку в механике изучается, во-первых, движение тел, а во-вторых, взаимодействие тел между собой, то принято различать два вида механической энергии: кинетическую энергию , обусловленную движением тела, и потенциальную энергию , обусловленную взаимодействием тела с другими телами.

Кинетической энергией механической системы называют энергию, з ависящую от скоростей движения точек этой системы.

Выражение для кинетической энергии можно найти, определив работу равнодействующей силы, приложенной к материальной точке. На основании (2.24) запишем формулу для элементарной работы равнодействующей силы:

Так как
, то dА = mυdυ. (2.25)

Чтобы найти работу равнодействующей силы при изменении скорости тела от υ 1 до υ 2 проинтегрируем выражение (2.29):

(2.26)

Так как работа - мера передачи энергии от одного тела другому, то на

основании (2.30) запишем, что величина есть кинетическая энергия

тела:
откуда вместо (1.44) получаем

(2.27)

Теорему, выраженную формулой (2.30) принято называть теоремой о кинетической энергии . В соответствии с ней работа сил, действующих на тело (или систему тел), равна изменению кинетической энергии этого тела (или системы тел).

Из теоремы о кинетической энергии следует физический смысл кинетической энергии : кинетическая энергия тела равна работе, которую оно способно совершать в процессе уменьшения своей скорости до нуля. Чем больше «запас» кинетической энергии у тела, тем большую работу оно способно совершить.

Кинетическая энергия системы равна сумме кинетических энергий материальных точек, из которых эта система состоит:

(2.28)

Если работа всех сил, действующих на тело, положительна, то кинетическая энергия тела возрастает, если работа отрицательна, то кинетическая энергия убывает.

Очевидно, что элементарная работа равнодействующей всех приложенных к телу сил будет равна элементарному изменению кинетической энергии тела:

dА = dЕ к. (2.29)

В заключение заметим, что кинетическая энергия, как и скорость движения, имеет относительный характер. Например, кинетическая энергия пассажира, сидящего в поезде, будет разной, если рассматривать движение относительно полотна дороги или относительно вагона.

§2.7 Потенциальная энергия

Вторым видом механической энергии является потенциальная энергия – энергия, обусловленная взаимодействием тел.

Потенциальная энергия характеризует не любое взаимодействие тел, а лишь такое, которое описывается силами, не зависящими от скорости. Большинство сил (сила тяжести, сила упругости, гравитационные силы и т.д.) именно таковы; исключением являются лишь силы трения. Работа рассматриваемых сил не зависит от формы траектории, а определяется лишь её начальным и конечным положением. Работа таких сил на замкнутой траектории равна нулю.

Силы, работа которых не зависит от формы траектории, а зависит лишь от начального и конечного положения материальной точки (тела) называют потенциальными или консервативными силами .

Если тело взаимодействует со своим окружением посредством потенциальных сил, то для характеристики этого взаимодействия можно ввести понятие потенциальной энергии.

Потенциальной называют энергию, обусловленную взаимодействием тел и зави­сящую от их взаимного расположения.

Найдем потенциальную энергию тела, поднятого над землей. Пусть тело массой m равномерно перемещается в гравитационном поле из положения 1 в положение 2 по поверхности, сечение которой плоскостью чертежа показано на рис. 2.8. Это сечение является траекторией материальной точки (тела). Если трение отсутствует, то на точку дейст­вуют три силы:

1) сила N со стороны поверхности нормально поверхности, работа этой силы равна нулю;

2) сила тяжести mg, работа этой силы А 12 ;

3) сила тяги F со стороны некоторого движущего тела (двигатель внутреннего сгорания, электродвигатель, человек и т. п.); работу этой силы обозначим А T .

Рассмотрим работу силы тяжести при перемещении тела вдоль наклонной плоскости длиной ℓ (рис. 2.9). Как видно из этого рисунка, работа равна

А" = mgℓ соsα = mgℓ соs(90° + α) = - mgℓ sinα

Из треугольника ВСD имеем ℓ sinα = h, по­этому из последней формулы следует:

Траекторию движения тела (см. рис. 2.8) можно схематично представить небольшими участками наклонной плоскости, поэтому для, работы силы тяжести на всей траектории 1 -2 справедливо выражение

A 12 =mg (h 1 -h 2) =-(mg h 2 - mg h 1) (2.30)

Итак, работа силы тяжести не зависит от траектории тела, а зависит от различия в высотах расположения начальной и конечной точек траектории.

Величину

е п = mg h (2.31)

называют потенциальной энергией материальной точки (тела) массой m поднятой над землей на высоту h. Следовательно, формулу (2.30) можно переписать так:

A 12 = =-(En 2 - En 1) или A 12 = =-ΔEn (2.32)

Работа силы тяжести равна взятому с обратным знаком изменению потенциальной энергии тел, т. е. разности ее конечного и начального значений (теорема о потенциальной энергии ).

Подобные рассуждения можно привести и для упруго деформированного тела.

(2.33)

Отметим, что физический смысл имеет разность потенциальных энергий как величина, определяющая работу консервативных сил. В связи с этим безразлично, какому положению, конфигурации, следует приписать нулевую потенциальную энергию.

Из теоремы о потенциальной энергии можно получить одно очень важное следствие: консервативные силы всегда направлены в сторону уменьшения потенциальной энергии. Установленная закономерность проявляется в том, что любая система, предоставленная самой себе, всегда стремится перейти в такое состояние, в котором её потенциальная энергия имеет наименьшее значение. В этом заключается принцип минимума потенциальной энергии .

Если система в данном состоянии не обладает минимальной потенциальной энергией, то это состояние называют энергетически невыгодным .

Если шарик находится на дне вогнутой чаши (рис.2.10,а), где его потенциальная энергия минимальна (по сравнению с ее значениями в соседних положениях), то его состояние более выгодно. Равновесие шарика в этом случае является устойчивым : если сместить шарик в сторону и отпустить, то он снова возвратится в своё первоначальное положение.

Энергетически невыгодным, например, является положение шарика на вершине выпуклой поверхности (рис.2.10, б). Сумма сил, действующих при этом на шарик, равна нулю, и потому, этот шарик будет находится в равновесии. Однако равновесие это является неустойчивым : достаточно малейшего воздействия, чтобы он скатился вниз и тем самым перешёл в состояние энергетически более выгодное, т.е. обладающее меньшей

потенциальной энергией.

При безразличном равновесии (рис. 2.10, в) потенциальная энергия тела равна потенциальной энергии всех его возможных ближайших состояний.

На рисунке 2.11 можно указать некоторую ограниченную область пространства (например cd), в которой потенциальная энергия меньше, чем вне её. Эта область получила название потенциальной ямы .



Понравилась статья? Поделиться с друзьями: