Энергия покоя полная энергия тела. Полная механическая энергия

Полная энергия

В СТО масса тела m определяется из уравнения релятивистской динамики:

где E - полная энергия свободного тела, p - его импульс, c - скорость света.

Энергия покоя E 0 , или массовая энергия покоя частицы - её энергия, когда она находится в состоянии покоя относительно данной инерционной системы отсчёта; может немедленно перейти в потенциальную (пассивную) и в кинетическую (активную) энергию, что определяется математической формулой эквивалентности массы и энергии следующим образом:

E 0 = m 0 c 2 ,

где m 0 - масса покоя частицы, c - скорость света в вакууме.

Можно видеть, что эта формула получается из предыдущей при p = 0 , т.е. когда скорость частицы равна нулю.

«Кинетическая энергия » является одним из видов механической энергии, связанным соскоростью движения тела. В классическом и релятивистском случаях она выражается известными формулами:

соответственно. Здесь u – скорость тела, m – его классическая масса, m 0 – релятивистская масса покоя, c – величина скорости света

15. Кинетическая энергия поступательного и вращательного движения.

Кинетическая энергия является характеристикой и поступатель­ного и вращательного движения системы, поэтому теоремой об изме­нении кинетической энергии особенно часто пользуются при решении задач.

Если система состоит из нескольких тел, то ее кинетическая энергия равна, очевидно, сумме кинетических энергий этих тел:

Кинетическая энергия – скалярная и всегда положительная величина.

Найдем формулы для вычисления кинетической энергии тела в разных случаях движения.

1. Поступательное движение . В этом случае все точки тела движутся с одинаковыми скоростями, равными скорости дви­жения центра масс. То есть, для любой точки

Таким образом, кинетическая энергия тела при поступатель­ном движении равна половине произведения массы тела на квад­рат скорости центра масс. От направления движения значение Т не зависит.

2. Вращательное движение . Если тело вращается вокруг какой-нибудь оси Оz (см. рис.46), то скорость любой его точки , где - расстояние точки от оси вращения, а w- угло­вая скорость тела. Подставляя это значение и вынося общие множители за скобку, получим:

Величина, стоящая в скобке, представляет собою момент инерции тела относительно оси z. Таким образом, окончательно найдем:

т. е. кинетическая энергия тела при вращательном движении равна половине произведения момента инерции тела относительно оси вращения на квадрат его угловой скорости. От направления вращения значение Т не зависит.

Рис.46

При вращении тела вокруг неподвижной точки кинетическая энергия определяется как (рис.47)



или, окончательно,

,

где I x , I y , I z – моменты инерции тела относительно главных осей инерции x 1 , y 1 , z 1 в неподвижной точке О ; , , – проекции вектора мгновенной угловой скорости на эти оси.

16. Плоское движение. Кинетическая энергия тела, совершающего плоское движение.

Плоское движение тел является одним из наиболее распространенных в технике. Плоское движение совершают тела качения (колеса, катки, цилиндры) на прямолинейном участке пути; отдельные детали механизмов, предназначенных для преобразования вращательного движения одного тела в поступательное или колебательное другого; шестерни планетарных передач.

Полная механическая энергия характеризует движение и взаимодействие тел, следовательно, зависит от скоростей и взаимного расположения тел.

Полная механическая энергия замкнутой механической системы равна сумме кинетической и потенциальной энергии тел этой системы:

Закон сохранения энергии

Закон сохранения энергии - фундаментальный закон природы.

В ньютоновской механике закон сохранения энергии формулируется следующим образом:

    Полная механическая энергия изолированной (замкнутой) системы тел остаётся постоянной.

Другими словами:

    Энергия не возникает из ничего и не исчезает никуда, она может только переходить из одной формы в другую.

Классическими примерами этого утверждения являются: пружинный маятник и маятник на нити (с пренебрежимо малым затуханием). В случае пружинного маятника в процессе колебаний потенциальная энергия деформированной пружины (имеющая максимум в крайних положениях груза) переходит в кинетическую энергию груза (достигающую максимума в момент прохождения грузом положения равновесия) и обратно. В случае маятника на нити потенциальная энергия груза переходит в кинетическую энергию и обратно.

2 Оборудование

2.1 Динамометр.

2.2 Штатив лабораторный.

2.3 Груз массой 100 г – 2шт.

2.4 Линейка измерительная.

2.5 Кусочек мягкой ткани или войлока.

3 Теоретическое обоснование

Схема экспериментальной установки приведена на рисунке 1.

Динамометр укреплен вертикально в лапке штатива. На штатив по­мещают кусочек мягкой ткани или войлока. При подвешивании к ди­намометру грузов растяжение пружины динамометра определяется положением указателя. При этом максимальное удлинение (или стати­ческое смещение) пружины х 0 возникает тогда, когда сила упругости пружины с жесткостью k уравновешивает силу тяжести груза массой т:

kx 0 =mg, (1)

где g = 9,81- ускорение свободного падения.

Следовательно,

Статическое смещение характеризует новое положение равновесия О" нижнего конца пружины (рис. 2).

Если груз оттянуть вниз на расстояние А от точки О" и отпустить в точке 1, то возникают периодические колебания груза. В точках 1 и 2, называемых точками поворота, груз останавливается, изменяя на­правление движения на противоположное. Поэтому в этих точках ско­рость груза v = 0.

Максимальной скоростью v m ax груз будет обладать в средней точ­ке О". На колеблющийся груз действуют две силы: постоянная сила тяжести mg и переменная сила упругости kx. Потенциальная энергия тела в гравитационном поле в произвольной точке с координатой х равна mgx. Потенциальная энергия деформированного тела соответственно равна .

При этом за нуль отсчета потенциальной энергии для обеих сил принята точка х = 0, соответствующая положению указателя для не­растянутой пружины.

Полная механическая энергия груза в произвольной точке скла­дывается из его потенциальной и кинетической энергии. Пренебрегая силами трения, воспользуемся законом сохранения полной механиче­ской энергии.

Приравняем полную механическую энергию груза в точке 2 с коор­динатой -(х 0 -А) и в точке О" с координатой 0 :

Раскрывая скобки и проводя несложные преобразования, приведем формулу (3) к виду

Тогда модуль максимальной скорости грузов

Жесткость пружины можно найти, измерив статическое смещение х 0 . Как следует из формулы (1),

Подведем некоторые итоги. В предыдущих параграфах было выяснено, что:

1) если отдельные тела системы движутся с некоторыми скоростями, то от них может быть получена работа за счет уменьшения кинетической энергии этих тел:

где равно сумме изменений кинетической энергии всех тел системы;

2) если в системе тел действуют какие-либо консервативные силы, то работа может быть получена также за счет уменьшения

потенциальной энергии этой стемы:

Поэтому можно сказать, что полная работа, которую может отдать такая система, будет всегда равна

Сумма потенциальной и кинетической энергий системы тел получила название полной энергии системы:

Полная энергия системы определяет ту работу, которую можно получить от данной системы тел при ее взаимодействии о какими-либо другими телами, не входящими в эту систему.

Определим сначала, что может происходить с энергией изолированной системы, если телам предоставить возможность свободно двигаться под действием внутренних сил.

Пусть тело массы находится на высоте над поверхностью Земли и имеет скорость (рис. 5.33). В этом положении у тела будет кинетическая энергия и потенциальная энергия Полная энергия системы будет равна

Допустим, что тело перешло на высоту и его скорость стала равной При этом движении сила тяжести совершит работу

Вся эта работа будет израсходована на увеличение кинетической энергии тела:

(Трения и внешних сил нет.) Подставим в это выражение значение работы и перегруппируем члены уравнения:

Левая часть найденного выражения определяет полную энергию системы для начального момента времени:

Правая же часть определяет полную энергию системы для конечного момента времени:

В результате можно записать:

Оказалось, что при движении тел изолированной системы только под действием внутренних сил полная энергия системы не изменяется. При движении тел произошло только превращение части потенциальной энергии в кинетическую. В этом и состоит закон сохранения энергии, который можно сформулировать следующим образом: в изолированной системе тел полная энергия остается постоянной во все время движения тел; в системе происходят лишь превращения энергии из одного вида в другой.

Отсюда же следует, что если на систему действуют какие-либо внешние силы, то изменения полной энергии системы равны работе этих внешних сил.

Если в системе действуют силы трения, то полная энергия системы при движении тел уменьшается. Она расходуется на работу против этих сил. Одновременно работа сил трения производит нагревание. Как уже говорилось ранее, при работе сил трения происходит превращение механического движения в тепловое. Количество выделившегося тепла при этом в точности равно убыли полной механической энергии системы.

Рассмотрим, как изменяется кинетическая и потенциальная энергия тела, брошенного вверх.

При подъеме тела скорость его убывает по закону , где - начальная скорость, - время. Кинетическая энергия при этом также убывает, изменяясь по закону

.

Так как начальная кинетическая энергия тела равна , то к моменту убыль кинетической энергии

. (101.1)

С другой стороны, высота тела в момент есть

Следовательно, приращение потенциальной энергии за время равно

. (101.2)

Сравнивая это выражение с (101.1), видим, что приращение потенциальной энергии за время равно убыли кинетической энергии за то же время. Таким образом, при движении тела вверх его кинетическая энергия постепенно превращается в потенциальную. Когда движение вверх прекратилось (наивысшая точка подъема), вся кинетическая энергия полностью превратилась в потенциальную. При движении тела вниз происходит обратный процесс: потенциальная энергия тела превращается в кинетическую.

При этих превращениях полная механическая энергия (т. е. сумма кинетической и потенциальной энергий) остается неизменной, так как при подъеме убыль кинетической энергии полностью покрывается приращением потенциальной (а при падении - наоборот). Если потенциальную энергию тела у поверхности земли считать равной нулю (§ 97), то сумма кинетической и потенциальной энергий тела на любой высоте во время подъема или падения будет равна

, (101.3)

т. е. остается равной начальной кинетической энергии тела. Этот вывод представляет собой частный случай одного из важнейших законов природы - закона сохранения энергии.

101.1. С башни высоты 20 м брошен камень со скоростью 15 м/с. Найдите скорость камня при падении его на землю и сравните ее со скоростью падения с той же высоты, но без начальной скорости. Сопротивлением воздуха пренебречь.

101.2. Считая известными формулу (101.2) и зависимость потенциальной энергии от высоты, выведите закон движения тела, брошенного по вертикали.

Слагаемое
(5)
называется полной энергией частицы. Полная энергия покоящейся частицы равна . Ее называют энергией покоя. Эту энергию можно выделить. Как это сделать? Физики установили, что у каждой частицы есть пара - античастица. Например, у электрона античастицей является позитрон. Он во всех отношениях, кроме заряда, похож на электрон. Античастицы имеют заряд противоположный заряду своего двойника. При соединении частицы с античастицей происходит аннигиляция, одним из результатов которой может быть рождение электромагнитной волны. Энергия возникшей волны равна полной релятивистской энергии взаимодействующих частиц, включающей и энергию покоя.

Задача 3. Если бы удавалось сохранять и затем управляемо расходовать энергию, выделяющуюся при аннигиляции, то на сколько времени эксплуатации в квартире хватило бы одного миллиграмма антиматерии? (Считайте, что месячный расход электроэнергии равен 500 кВт×час. )

Выражение (5) напоминает теорему Пифагора. При ускорении частицы ее импульс растет, как катет прямоугольного треугольника, а полная энергия растет, как гипотенуза. Энергия покоя - не зависящий от разгона катет. При небольших скоростях прирост импульса приводит к малым изменениям энергии, потому что у очень низких треугольников гипотенуза почти равна горизонтальному катету. Это случай медленных движений (обычная механика Ньютона). Потом энергия начинает расти быстрее и быстрее. При скоростях, близких к скорости света, треугольник сильно вытянут вверх: в таком треугольнике гипотенуза почти равна вертикальному катету. То есть при быстром движении стирается разница между энергией и импульсом (умноженным на скорость света): E»pc . До такой степени разогнанные частицы называют ультрарелятивистскими.

Полная энергия частицы наиболее компактно записывается через релятивистскую массу m в виде
E=mc2. (6)
Это знаменитая формула Эйнштейна. Она устанавливает факт тож­дественности энергии и массы частиц.

В левую часть уравнения (5) входят все виды энергии – не только кинетическая, но и потенциальная энергия взаимодействия. Так, известно, что для разрушения атомных ядер, состоящих из протонов и нейтронов, нужно совершить определенную работу. Это означает, что энергия разобранного ядра больше целого ядра. По этой причине масса ядра всегда меньше суммарной массы составляющих частиц. Разница между суммарной массой составляющих частиц и массой ядра называется дефектом массы .

Задача 4. Какой процент составляет дефект массы ядра кислорода от полной массы, если его масса равна 16 а.е.м . Масса протона, 1.00759 а.е.м , масса нейтрона, 1.00898 а.е.м . Какую работу (в электронвольтах) надо совершить, чтобы разобрать ядро на составные части?
1 а.е.м=1,66×10-27кг .



Понравилась статья? Поделиться с друзьями: