Заворчал живой замок лег у двери поперек. Загадки о животных

Каждая кость человека представляет собой сложный орган: она занимает определенное положение в теле, имеет свою форму и строение, выполняет свойственную ей функцию. В образовании кости принимают участие все виды тканей, но преобладает костная ткань.

Общая характеристика костей человека

Хрящ покрывает только суставные поверхности кости, снаружи кость покрыта надкостницей, внутри расположен костный мозг. Кость содержит жировую ткань, кровеносные и лимфатические сосуды, нервы.

Костная ткань обладает высокими механическими качествами, ее прочность можно сравнить с прочностью металла. Химический состав живой кости человека содержит: 50% воды, 12,5% органических веществ белковой природы (оссеин), 21,8% неорганических веществ (главным образом фосфат кальция) и 15,7% жира.

Виды костей по форме разделяют на:

  • Трубчатые (длинные - плечевая, бедренная и др.; короткие - фаланги пальцев);
  • плоские (лобная, теменная, лопатка и др.);
  • губчатые (ребра, позвонки);
  • смешанные (клиновидная, скуловая, нижняя челюсть).

Строение костей человека

Основной структурой единицей костной ткани является остеон, который виден в микроскоп при малом увеличении. Каждый остеон включает от 5 до 20 концентрически расположенных костных пластинок. Они напоминают собой вставленные друг в друга цилиндры. Каждая пластинка состоит из межклеточного вещества и клеток (остеобластов, остеоцитов, остеокластов). В центре остеона имеется канал - канал остеона; в нем проходят сосуды. Между соседними остеонами расположены вставочные костные пластинки.


Костную ткань образуют остеобласты , выделяя межклеточное вещество и замуровываясь в нем, они превращаются в остеоциты - клетки отростчатой формы, неспособные к митозу, со слабо выраженными органеллами. Соответственно в сформировавшейся кости содержатся в основном остеоциты, а остеобласты встречаются только в участках роста и регенерации костной ткани.

Наибольшее количество остеобластов находится в надкостнице - тонкой, но плотной соединительно-тканной пластинке, содержащей много кровеносных сосудов, нервных и лимфатических окончаний. Надкостница обеспечивает рост кости в толщину и питание кости.

Остеокласты содержат большое количество лизосом и способны выделять ферменты, чем можно объяснить растворение ими костного вещества. Эти клетки принимают участие в разрушении кости. При патологических состояниях в костной ткани количество их резко увеличивается.

Остеокласты имеют значение и в процессе развития кости: в процессе построения окончательной формы кости они разрушают обызвествленный хрящ и даже новообразованную кость, «подправляя» ее первичную форму.

Структура кости: компактное и губчатое вещество

На распиле, шлифах кости различают две ее структуры - компактное вещество (костные пластинки расположены плотно и упорядоченно), расположенное поверхностно, и губчатое вещество (костные элементы расположены рыхло), лежащее внутри кости.


Такое строение костей в полной мере соответствует основному принципу строительной механики - при наименьшей затрате материала и большой легкости обеспечить максимальную прочность сооружения. Это подтверждается и тем, что расположение трубчатых систем и основных костных балок соответствует направлению действия силы сжатия, растяжения и скручивания.

Структура костей представляет собой динамическую реактивную систему, изменяющуюся в течение всей жизни человека. Известно, что у людей, занимающихся тяжелым физическим трудом, компактный слой кости достигает относительно большого развития. В зависимости от изменения нагрузки на отдельные части тела могут изменяться расположение костных балок и структура кости в целом.

Соединение костей человека

Все соединения костей можно разделить на две группы:

  • Непрерывные соединения , более ранние по развитию в филогенезе, неподвижные или малоподвижные по функции;
  • прерывные соединения , более поздние по развитию и более подвижные по функции.

Между этими формами существует переходная - от непрерывных к прерывным или наоборот - полусустав .


Непрерывное соединение костей осуществляется посредством соединительной ткани, хрящей и костной ткани (кости собственно черепа). Прерывное соединение костей, или сустав, является более молодым образованием соединения костей. Все суставы имеют общий план строения, включающий суставную полость, суставную сумку и суставные поверхности.

Суставная полость выделяется условно, так как в норме между суставной сумкой и суставными концами костей пустоты не существует, а находится жидкость.

Суставная сумка охватывает суставные поверхности костей, образуя герметическую капсулу. Суставная сумка состоит из двух слоев, наружный слой которой переходит в надкостницу. Внутренний слой выделяет в полость сустава жидкость, играющую роль смазки, обеспечивая свободное скольжение суставных поверхностей.

Виды суставов

Суставные поверхности сочленяющихся костей покрыты суставным хрящом. Гладкая поверхность суставных хрящей способствует движению в суставах. Суставные поверхности по форме и величине очень разнообразны, их принято сравнивать с геометрическими фигурами. Отсюда и название суставов по форме : шаровидные (плечевой), эллипсовидные (луче-запястный), цилиндрические (луче-локтевой) и др.

Так как движения сочленяющихся звеньев совершаются вокруг одной, двух или многих осей, суставы принято также делить по количеству осей вращения на многоосные (шаровидный), двуосные (эллипсовидный, седловидный) и одноосные (цилиндрический, блоковидный).

В зависимости от количества сочленяющихся костей суставы делятся на простые, в которых соединяется две кости, и сложные, в которых сочленяется больше двух костей.

Химический состав костной ткани

Межклеточный органический матрикс компактной кости составляет около 20%, неорганические вещества – 70% и вода – 10%. В губчатой кости преобладают органические компоненты, которые составляют более 50%, на долю неорганических соединений приходится 33-40%. Количество воды приблизительно то же, что и в компактной кости.

Органический матрикс костной ткани. Приблизительно 95% органического матрикса приходится на коллаген типа I. Данный тип коллагена входит также в состав сухожилий и кожи, однако коллаген костной ткани обладает некоторыми особенностями. В нем несколько больше оксипролина, а также свободных аминогрупп лизиновых и оксилизиновых остатков. Это обусловливает наличие большего количества поперечных связей в коллагеновых волокнах и их большую прочность. По сравнению с коллагеном других тканей костный коллаген характеризуется повышенным содержанием фосфата, который в основном связан с остатками серина.

Белки неколлагеновой природы представлены гликопротеинами, белковыми компонентами протеогликанов. Принимают участие в росте и развитии кости, процессе минерализации, водно-солевом обмене. Альбумины участвуют в транспорте гормонов и других веществ из крови.

Преобладающим белком неколлагеновой природы является остеокальцин . Он присутствует только в костях и зубах. Это небольшой (49 аминокислотных остатков) белок, называемаый также костным глутаминовым белком или gla-белком. В молекуле остеокальцина обнаружены три остатка
γ-карбоксиглутаминовой кислоты. За счет этих остатков он способен связывать кальций. Для синтеза остеокальцина необходим витамин К (рис. 34).

Рис. 34. Посттрансляционная модификация остеокальцина

В состав органического матрикса костной ткани входят гликозаминогликаны, основным представителем которых является хондроитин-4-сульфат. Хондроитин-6-сульфат, кератансульфат и гиалуроновая кислота содержатся в небольших количествах. Окостенение сопровождается изменением гликозаминогликанов: сульфатированные соединения уступают место несульфатированным. Гликозаминогликаны участвуют в связывании коллагена с кальцием, регуляции водного и солевого обмена.

Цитрат необходим для минерализации костной ткани. Он образует комплексные соединения с солями кальция и фосфора, обеспечивая возможность повышения концентрации их в ткани до такого уровня, при котором могут начаться кристаллизация и минерализация. Также принимет участие в регуляции уровня кальция в крови. Кроме цитрата, в костной ткани обнаружены сукцинат, фумарат, малат, лактат и другие органические кислоты.

Костный матрикс содержит небольшое количество липидов. Липиды играют существенную роль в образовании ядер кристаллизации при минерализации кости.

Остеобласты богаты РНК. Высокое содержание РНК в костных клетках отражает их активность и постоянную биосинтетическую функцию.

Средний химический состав костной ткани включает 20-25 % воды, 75-80 % сухого остатка, в том числе 30 % белков и 45 % неорганических соединений. Однако состав ткани изменяется в зависимости от вида и возраста животных, а также от структуры кости. Химический состав различных видов костей крупного рогатого скота представлен в табл. 5.5.

Таблица 55. Химический состав костей крупного рогатого скота

Кости

Содержание, %

влаги

белка

жира

золы

Позвоночник

30-41

14-23

13-20

20-30

Грудная кость

48-53

16-21

13-16

1Ф 17

Тазовая кость

24-30

16-20

22-24

30-33

Ребра

28 31

19-22

10-11

36-40

Трубчатая

15-23

17-23

13-24

40-50

Кулак

17 32

14-21

18 33

28-36

При обработке костной ткани кислотами (соляной, фосфорной и др.) минеральные вещества растворяются и остается мягкая органическая часть - оссеин. Размягчение кости в результате удаления минеральных веществ называют мацерацией. х

В структуру оссеина входят в основном белковые вещества -- коллаген (93 %), оссемукоид, альбумины, глобулины и др. Аминокислотный состав кости отличается низким содержанием глютаминовой кислоты, лизина, отсутствием цистина, триптофана; высоким содержанием глицина, пролнна, оксипролина, составляющих до 43 % обшей суммы аминокислот. Таким образом, белки кости не являются полноценными.

Из органических соединений в составе костной ткани присутствуют липиды, в частности лецитин, соли лимонной кислоты и пр.

Наиболее характерными компонентами костной ткани являются минеральные вещества, составляющие половину массы ткани. Они представлены главным образом фосфорно-кальциевыми солями, необходимыми для жизнедеятельности организма, а также микроэлементами - Al, Mn, Си, РЬ и др.

С возрастом животного наряду с общим увеличением содержания минеральных веществ в костной ткани нарастает содержание карбонатов и уменьшается количество фосфатов. В результате такого изменения кости утрачивают упругость и становятся хрупкими. Изменение свойств кости может быть связано и с недостатком определенных солей в питании, в частности при недостатке кальция при жомовом откорме. Электрооглушение такого скота приводит к раздроблению позвоночника и тазовых костей.

Костный мозг, заполняющий костномозговые полости, содержит в основном жиры (до 98 % в сухом остатке желтого мозга) и в меньшем количестве холинфосфатиды, холестерин, белки и минеральные вещества. В составе жиров преобладают пальмитиновая, олеиновая, стеариновая кислоты.

В соответствии с особенностями химического состава кость используют для производства полуфабрикатов, студней, зельцев, костного жира, желатина, клея, костной муки.

Хрящевая ткань. Хрящевая ткань выполняет опорную п механическую функции. Она состоит из плотного основного вещества, в котором располагаются клетки округлой формы, коллагеновые и эластиновые волокна (рис. 5.14). В зависимости от состава межклеточного вещества различают гиалиновые, волокнистые и эластичные хрящи. Гиалиновый хрящ покрывает суставные поверхности костей, из него построены реберные хрящи и трахея. В межклеточном веществе такого хряща с возрастом откладываются соли кальция. Гиалиновый хрящ полупрозрачен, имеет голубоватый оттенок.

Из волокнистого хряща состоят связки между позвонками, а также сухожилия и связки в месте их прикрепления к костям. Волокнистый хрящ содержит много коллагеновых волокон и незначительное количество аморфного вещества. Он имеет вид полупрозрачной массы.

Эластический хрящ кремового цвета, в межклеточном веществе которого преобладают эластиновые волокна. В эластическом хряще никогда не откладывается известь. Он входит в состав ушной раковины, гортани.

Средний химический состав хрящевой ткани включает: 40-70 % воды,

19-20 % белков, 3,5 % жиров, 2-10 % минеральных веществ, около 1 % гликогена.

Для хрящевой ткани характерно высокое содержание мукопротеида - хондромукоида и мукополисахарида - хондроитинсерной кислоты в основном межклеточном веществе. Важным свойством этой кислоты является её способность образовывать солеобразные соединения с различными белками: коллагеном, альбумином и др. Этим, видимо, объясняется «цементирующая» роль мукополисахаридов в хрящевой ткани.

Хрящевая ткань используется на пищевые цели, а также из нее вырабатываются желатин и клей. Однако качество желатина и клея часто бывает недостаточно высоким, так как мукополисахариды и глюкопротеиды переходят в раствор из ткани вместе с желатином, снижая вязкость и прочность студня.

В состав скелета любого взрослого человека входит 206 различных костей, все они различны по строению и роли. На первый взгляд они кажутся твердыми, негибкими и безжизненными. Но это ошибочное впечатление, в них непрерывно происходят различные обменные процессы, разрушение и регенерация. Они, в совокупности с мышцами и связками, образуют особую систему, что носит название "костно-мышечная ткань", основная функция которой - опорно-двигательная. Она образована из нескольких видов особых клеток, которые различаются по структуре, функциональным особенностям и значению. О костных клетках, их строение и функциях далее и пойдет речь.

Строение костной ткани

Это отдельный вид соединительной ткани, из нее образуются все кости в человеческом теле. В ее состав входят особые клетки и межклеточное вещество. Последнее включает органический матрикс, состоящий из коллагеновых волокон (90-95% от общей массы) и минеральных компонентов, в основном солей кальция (5-10%). Благодаря такому составу костная ткань человека имеет гармоничное сочетание твердости и эластичности. Различают три группы клеток: остеокласты (слева), остеобласты (посередине), остеоциты (справа на фото).

Более подробно остановимся на них далее. Коллаген, содержащийся в матриксе, имеет отличия от своих аналогов, находящихся в других тканях, главным образом за счет того, что содержит больше специфических полипептидов. Волокна расположены, как правило, параллельно уровню наиболее вероятных нагрузок на кость. Именно благодаря нему сохраняется эластичность и упругость.

Если кость подвергнуть действию соляной кислоты, то минеральные вещества будут растворены, а вот органические (оссеин) останутся. Они сохранят форму, но станут чрезмерно гибкими и сильно подверженными деформированию. Такое состояние характерно для маленьких детей. У них высоко содержание оссеина, поэтому кости более эластичны, чем у взрослых. И обратный случай, когда теряются органические вещества, но остаются минеральные. Это происходит, если, к примеру, кость обжечь: она сохранит свою форму, но приобретет вместе с тем сильную хрупкость и может разрушиться даже от незначительного прикосновения. Такие изменения состав костной ткани претерпевает в старости. Доля минеральных солей доходит до 80% от всей массы. Поэтому пожилые люди более подвержены различного рода переломам и травмам.

Если установить плотность костной ткани (объем), то это позволит оценить прочность скелета и его отдельных частей. Такие исследования проводятся с использованием компьютерной томографии. Своевременная диагностика позволяет начать лечение или поддерживающую терапию вовремя.

Остеобласты (активные): особенности строения

Остеобласты - это клетки костной ткани, располагающиеся в верхних ее слоях, имеющие многоугольную, кубическую форму с различного вида отростками. Внутреннее содержимое мало чем отличается от других. Хорошо развитый зернистый эндоплазматический ретикуллум содержит различные элементы, рибосомы, аппарат Гольджи, округлой или овальной формы ядро богатое хроматином и содержащее ядрышко. Снаружи эти клетки костной ткани окружены тончайшими микрофибриллами.

Главная функция остеобластов - синтез компонентов межклеточного вещества. Это коллаген (преимущественно первого типа), гликопротеины матрикса (остеокальцин, остеонектин, остеопонтин, костный сиалопротеин), протеогликаны (бигликан, гиалуроновая кислота, декорин), а также различные костные морфогенетические белки, факторы роста, ферменты, фосфопротеины. Нарушение выработки всех этих соединений остеобластами наблюдается при некоторых заболеваниях. Например, недостаток витамина С (цинга) у детей характеризуется нарушением развития и роста костей вследствие дефекта синтеза коллагена и гликозаминогликанов. По этой же причине и замедляется восстановление костной ткани, заживление при переломах. Так как остеобласты фактически отвечают за рост, то присутствуют исключительно в развивающейся костной ткани.

Механизм минерализации остеобластами органического матрикса

Существует два способа:

  1. Отложение кристаллов гидроксилата вдоль фибрилл коллагена из перенасыщенной внеклеточной жидкости. Особую роль при этом отводят некоторым протеогликанам, которые связывают кальций и удерживают его в зонах зазоров.
  2. Секреция особых матричных пузырьков. Это мелкие мембранные структуры, которые синтезируются и выделяются остеобластами. В них в большой концентрации содержится фосфат кальция и щелочная фосфатаза. Особая микросреда, создаваемая внутри пузырьков, благоприятствует образованию первых гидроксиапатитовых кристаллов.

Скорость минерализации остеоида (костная ткань на стадии формирования) может существенно меняться, в норме она занимает около 15 суток. Нарушения могут происходить при снижении концентрации ионов кальция в крови или фосфата. Результатом этого является размягчение и деформация костей - остеомаляция. Аналогичные нарушения наблюдаются, например, при рахите (дефицит витамина D).

Неактивные (покоящиеся) остеобласты

Они образуются из активных остеобластов, у нерастущей кости покрывают около 80-95% ее поверхности. Они имеют уплощенную форму с веретеновидным ядром. Остальные органеллы редуцированы. Но сохраняются рецепторы, реагирующие на различные гормоны и факторы роста. Между покоящимися остеобластами и остеоцитами сохраняется связь и таким образом образуется система, регулирующая минеральный обмен. Если происходит какое-либо повреждение (травмы, переломы), то они активизируются, и начинается активный синтез коллагена, выработка органического матрикса. Другими словами, за счет их происходит регенерация костных тканей. В то же время они могут быть причиной злокачественной опухоли - остеосаркомы.

Остеоциты: строение и функции

Эти клетки составляют основу зрелой костной ткани. Форма у них веретенообразная, с множеством отростков. Органелл значительно меньше по сравнению с остеобластами, есть округлое ядро (в нем преобладает гетеохроматин) с ядрышком. Остеоциты располагаются в лакунах, но непосредственно с матриксом не соприкасаются, а окружены тонким слоем костной жидкости. За счет нее осуществляется питание клеток.

Аналогично отделены и их отростки, имеющие достаточно большую длину до 50 мкм, располагающиеся в специальных канальцах. Их очень много, костная ткань буквально пронизана ими, они образуют ее дренажную систему, в которой и содержится тканевая жидкость. Через нее осуществляется обмен веществ между межклеточным веществом и клетками. Также стоит отметить, что они не делятся, а образуются из остеобластов и являются основными компонентами в сформировавшейся костной ткани.

Основная функция остеоцитов - поддержание нормального состояния костного матрикса и баланса кальция и фосфора в организме. Они способны воспринимать механические напряжения, и чувствительны к электрическим потенциалам, возникающим при действии деформирующих сил. Реагируя на них, они запускают локальный процесс, при котором соединительная костная ткань начинает перестраиваться.

Остеокласты

Такое название получили крупные клетки, содержащие от 5 до 100 ядер, имеющие моноцитарное происхождение, разрушающие кости и хрящи или, по-другому, вызывающие их резорбцию. В цитоплазме остеокластов содержится много митохондрий, элементов ЭПС (зернистой) и аппарат Гольджи, рибосомы, а также различные по функции лизосомы. В ядрах содержится большое количество хроматина и есть хорошо различимые ядрышки. Также имеется достаточное количество цитоплазматических отростков, больше всего их располагается на поверхности, прилегающей к разрушаемой кости. Они увеличивают площадь соприкосновения с ней. Костная ткань начинает разрушаться при повышении уровня особого гормона (паратиреоидного), который приводит к активации остеокластов. Механизм этого процесса связывают с выделением ими углекислого газа, который под воздействием специального фермента (карбоангидраза) превращается в кислоту, имеющую название угольная, она и растворяет соли кальция.

Механизм резорбции костной ткани

Стоит отметить, что процесс разрушения протекает циклически, и периоды высокой активности каждой клетки неизменно сменяются периодами покоя. Резорбция протекает в несколько этапов:

  1. Прикрепление остеокласта к разрушаемой поверхности кости, при этом наблюдается выраженная перестройка его цитоскелета.
  2. Окисление содержимого лакун. Это происходит либо путем выделения в них содержимого вакуолей, имеющего кислую среду, либо в результате действия протонных насосов.
  3. Разрушение минерального компонента матрикса.
  4. Растворение органических соединений в результате действия ферментов, секретируемых остеокластами в лакуну и активированными кислой средой.
  5. Выведение продуктов разрушения костной ткани.

Регуляция деятельности остеокластов определяется общими и местными факторами. К первым, например, относятся паратгормон, витамин D, они стимулируют активность. А угнетающими являются кальцитонин и эстрогены. К местным относится такой фактор, как создание электрического локального поля при механическом напряжении, к которому эти клетки очень чувствительны.

Строение грубоволокнистой костной ткани

Второе ее название - ретикулофиброзная. Она формируется у зародыша, как будущая основа костей. У взрослого же человека ее присутствие минимально, она сохраняется в швах черепа после того, как они зарастают и в зонах, где сухожилия прикрепляются к костям, а также в участках остеогенеза, например, при заживлении различного рода переломов. Строение костной ткани этого вида специфическое. Коллагеновые волокна собраны в плотные пучки, которые расположены неупорядоченно, имеют между собой «перекладины». Она обладает низкой механической прочностью, содержание остеоцитов значительно выше по сравнению с пластинчатой разновидностью. В патологических условиях наращивание костной ткани этого типа происходит при переломе кости или при болезни Педжета.

Особенности пластинчатой костной ткани

Она образована костными пластинками, имеющими толщину 4-15 мкм. Они, в свою очередь, состоят их трех компонентов: остеоцитов, основного вещества и коллагеновых тонких волокон. Из этой ткани образованы все кости взрослого человека. Волокна коллагена первого типа лежат параллельно относительно друг друга и ориентированы в определенном направлении, у соседних же костных пластинок они направлены в противоположную сторону и перекрещиваются практически под прямым углом. Между ними находятся тела остеоцитов в лакунах. Такое строение костной ткани обеспечивает ей наибольшую прочность.

Губчатое вещество кости

Встречается также название "трабекулярное вещество". Если проводить аналогию, то структура сравнима с обычной губкой, построенной из костных пластинок с ячейками между ними. Расположены они упорядоченно, в соответствии с распределенной функциональной нагрузкой. Из губчатого вещества в основном построены эпифизы длинных костей, часть смешанных и плоских и все короткие. Видно, что в основном это легкие и в то же время прочные части скелета человека, которые испытывают нагрузку в различных направлениях. Функции костной ткани находятся в прямой взаимосвязи с ее строением, которое в данном случае обеспечивает большую площадь для метаболических процессов, осуществляемых на ней, придает высокую прочность в совокупности с небольшой массой.

Плотное (компактное) вещество кости: что это?

Из компактного вещества состоят диафизы трубчатых костей, кроме того, оно тонкой пластинкой покрывает их эпифизы снаружи. Его пронизывают узкие каналы, через них проходят нервные волокна и кровеносные сосуды. Некоторые из них располагаются параллельно костной поверхности (центральные или гаверсовы). Другие выходят на поверхность кости (питательные отверстия), через них внутрь проникают артерии и нервы, а наружу - вены. Центральный канал, в совокупности с окружающими его костными пластинками, образует так называемую гаверсову систему (остеон). Это основное содержимое компактного вещества и их рассматривают как его морфофункциональную единицу.

Остеон - структурная единица костной ткани

Второе его название - гаверсова система. Это совокупность костных пластинок, имеющих вид цилиндров вставленных друг в друга, пространство между ними заполняют остеоциты. В центре располагается гаверсов канал, через него проходят обеспечивающие обмен веществ в костных клетках кровеносные сосуды. Между соседними структурными единицами есть вставочные (интерстициальные) пластинки. По сути, они являются остатками остеонов, существовавших ранее и разрушившихся в тот момент, когда костная ткань претерпевала перестройку. Также существуют еще генеральные и окружающие пластинки, они образуют самый внутренний и наружный слой компактного вещества кости соответственно.

Надкостница: строение и значение

Исходя из названия, можно определить, что она покрывает кости снаружи. Прикрепляется она к ним с помощью коллагеновых волокон, собранных в толстые пучки, которые проникают и сплетаются с наружным слоем костных пластинок. Имеет два выраженных слоя:

  • наружный (его образует плотная волокнистая, неоформленная соединительная ткань, в ней преобладают волокна, располагающиеся параллельно к поверхности кости);
  • внутренний слой хорошо выражен у детей и менее заметен у взрослых (образован рыхлой волокнистой соединительной тканью, в которой есть веретенообразные плоские клетки - неактивные остеобласты и их предшественники).

Надкостница выполняет несколько важных функций. Во-первых, трофическую, то есть обеспечивает кость питанием, поскольку на поверхности содержит сосуды, которые проникают внутрь вместе с нервами через специальные питательные отверстия. Эти каналы питают костный мозг. Во-вторых, регенераторную. Она объясняется наличием остеогенных клеток, которые при стимуляции трансформируются в активные остеобласты, вырабатывающие матрикс и вызывающие наращивание костной ткани, обеспечивающие ее регенерацию. В-третьих, механическую или опорную функцию. То есть обеспечение механической связи кости с другими прикрепляющимися к ней структурами (сухожилиями, мышцами и связками).

Функции костной ткани

Среди основных функций можно перечислить следующие:

  1. Двигательная, опорная (биомеханическая).
  2. Защитная. Кости оберегают от повреждений головной мозг, сосуды и нервы, внутренние органы и т. д.
  3. Кроветворная: в костном мозге происходит гемо - и лимфопоэз.
  4. Метаболическая функция (участие в обмене веществ).
  5. Репараторная и регенераторная, заключающиеся в восстановлении и регенерации костной ткани.
  6. Морфобразующая роль.
  7. Костная ткань - это своеобразное депо минеральных веществ и ростовых факторов.


Понравилась статья? Поделиться с друзьями: