Мегарельеф материков. Складчатые пояса континентов

  • Строение поверхностей наслоения. Определение кровли и подошвы слоёв
  • Сущность и условия образования слоистых толщ
  • 1.2. Первичные (ненарушенные) и нарушенные
  • 1.2.1.Горизонтальное залегание слоёв
  • 1.2.2. Наклонное залегание слоёв
  • 1.2.3. Нормальное и опрокинутое залегание
  • Определение элементов залегания наклонно залегающих геологических границ.
  • Определение истинной мощности слоя при наклонном залегании
  • Построение выхода пласта на поверхность на карте с топографической основой
  • 1.2.4. Согласное и несогласное залегание пород
  • Типы несогласий
  • Строение поверхностей несогласий.
  • Критерии установления несогласий при геологическом картировании.
  • Глава 2. Геологическое изучение разрывов в горных породах
  • 2.1. Трещины и кливаж в горных породах (разрывы без смещения).
  • 2.1.1. Трещины и трещиноватость
  • 2.1.2. Нетектонические трещины.
  • 2.1.3. Прототектонические трещины
  • 2.1.4. Тектонические трещины
  • Трещины отрыва
  • Трещины скалывания
  • 2.1.5. Отдельность
  • 2.1.6. Изучение трещиноватости
  • 2.2. Разрывы со смещением
  • 2.2.1. Сбросы
  • 2.2.2. Взбросы
  • 2.2.3. Грабены
  • 2.2.4. Горсты
  • 2.2.5. Сдвиги
  • 2.2.6. Раздвиги
  • 2.2.7. Надвиги
  • 2.2.8. Покровы
  • 2.2.9. Механизм образования и происхождение разрывов Образование или происхождение разрывов
  • 2.2.10. Определение возраста, типа и структурных элементов разрывов Определение возраста
  • Определение типов разрывных нарушений
  • Определение направления смещения крыльев
  • Определение амплитуды смещения
  • Признаки наличия разрывных нарушений
  • 1) По геологическим признакам
  • 2) По геоморфологическим признакам:
  • 3) По гидрологическим признакам:
  • Условные обозначения разрывных нарушений
  • Глава 3: Складчатые формы залегания пород
  • 3.1. Складки и их элементы и параметры
  • 3.2. Классификация складок
  • 3.2.1. Морфологическая классификация
  • 3.2.2. Генетическая классификация складок
  • Складки, обусловленные геологическими условиями
  • 3.3. Изучение складчатых форм
  • 3.4. Изображение складчатых форм
  • Литература
  • Глава 4. Геологическое картирование интрузивных образований
  • 4.1. Общая характеристика форм и особенностей залегания интрузивных пород
  • 4.2. Полевое изучение интрузивов и элементы структурно-петрологического картирования
  • Оконтуривание интрузивов
  • Определение характера контакта
  • Методы определения положения и элементов залегания контактов интрузивных тел
  • Восстановление морфологии эродированной кровли интрузивов
  • Определение возраста интрузий
  • Определение возраста интрузий на разрезе и геологической карте
  • Определение верха и низа (кровли и подошвы)
  • 4.3. Внутреннее строение интрузивных тел
  • 4.3.1. Внутреннее строение недифференцированных интрузивов
  • 4.3.2. Внутреннее строение дифференцированных интрузивов
  • 4.3.3. Внутреннее строение расслоенных интрузивов
  • 4.3.4. Изучение прототектоники интрузивных пород
  • Структурный блок
  • Глава 5: Геологическое картирование вулканических пород
  • 5.1. Вулканические аппараты и их строение
  • 5.1.1. Элементы вулканического аппарата
  • 5.1.2. Разновидности вулканов и их строение
  • 5.2 Особенности образования и условия залегания вулканических пород
  • 5.2.1. Лавовые потоки
  • 5.2.2. Пирокластические пласты
  • 5.2.3. Покровы (покровные и эксплозивные фации)
  • 5.2.4. Экструзивные фации
  • 5.2.5.Жерловые фации
  • 5.2.6. Субвулканические фации
  • 5.2.7. Пирокластические и пирокласто-осадочные фации
  • 5.3 Внутреннее строение
  • 5.3.1. Внутреннее строение лавовых потоков и экструзий
  • 5.3.2. Внутреннее строение пластов вулканокластических пород
  • 5.3.3. Внутреннее строение пластов вулканогенно-осадочных пород
  • 5.3.4. Полевое изучение вулканогенных пород
  • Палеовулканологические исследования
  • Глава 6: Геологическое картирование метаморфических пород
  • 6.1. Метаморфизм и метаморфические породы
  • 6.1.1. Типы и фации метаморфизма
  • 6.1.2. Типы метаморфических комплексов и основные разновидности метаморфических пород
  • Метаморфиты
  • Динамометаморфические породы
  • Мигматиты
  • Метасоматиты
  • 6.2. Общие особенности строения и залегания метаморфических пород
  • 6.2.1. Морфология тел метаморфических пород и формы залегания
  • 6.2.2. Текстуры и структурные элементы метаморфических пород
  • 6.2.3. Структурные формы метасоматических пород
  • 6.3. Методы изучения метаморфических толщ
  • 6.3.1. Петрографические методы изучения метаморфических пород
  • 6.3.2. Литологические методы метаморфических пород
  • 6.3.3. Петрогеохимические методы определения первичной природы метаморфическихпород
  • 6.3.4. Изотопно-геохимические методы
  • 6.3.5. Стратиграфические методы
  • 6.3.6. Методы формационного анализа
  • 6.3.7. Структурный анализ
  • Определение разновозрастности и последовательности развития структурных форм и структурных элементов.
  • Построение структурно-возрастной шкалы.
  • Определение последовательности эндогенных процессов.
  • Построение шкалы относительной последовательности эндогенных процессов.
  • Выделение тектоно-метаморфических циклов.
  • Выделение и корреляция разновозрастных свк (структурно-вещественных комплексов) с моно- и полициклическим развитием.
  • 6.3.8. Геофизические методы
  • 6.3.9. Дешифрирование аэрофото- и космофотоснимков
  • 6.4 Изображение метаморфических пород на геологической карте
  • 6.4.1. Особенности картирования метаморфических образований
  • Документация и отображение структурных элементов дислоцированных метаморфических пород
  • Литература
  • 7.1. Разновидности кольцевых структур
  • 7.1.1. Метеоритные кратеры и астроблемы и
  • 7.1.2. Соляные купола
  • 8.1. Модели вертикальной (внутренней) и латеральной неоднородности
  • 8.2. Основные этапы образования и развития земной коры
  • 8.3. Внутреннее строение Земли
  • Земная кора
  • Литосфера и астеносфера
  • Тектоносфера
  • 8.4. Основные структурные единицы литосферы
  • 8.4.1. Литосферные плиты
  • 8.4.2. Границы литосферных плит
  • 8.4.3. Внутренние области океанов
  • Срединно-океанические хребты
  • Трансформные разломы
  • Горячие точки
  • Абиссальные равнины
  • Внутриплитные возвышенности и хребты
  • Микроконтиненты
  • Возраст и происхождение океанов
  • 8.4.4. Области перехода континент–океан
  • Пассивные континентальные окраины
  • Активные континентальные окраины
  • Вулканические дуги
  • Трансформные окраины
  • 8.4.5. Области континентов
  • Континентальные платформы
  • Складчатые пояса континентов
  • Области внутриконтинентального орогенеза
  • Террейны
  • 9.1. Масштабы и виды геологосъёмочных работ
  • 9.1.1. Масштабы геологических съёмок
  • 9.1.2. Виды геологических съёмок
  • 9.2. Основы организации геологосъёмочных работ
  • 9.2.1. Предварительное изучение района работ
  • 9.2.2. Составление проекта геолого-съёмочных и поисковых работ
  • 9.3. Основы проведения геологосъёмочных работ
  • 9.3.1. Полевой период геологосъёмочных работ
  • 9.3.2. Проведение геологосъёмочных работ
  • Геологосъёмочные маршруты
  • Ведение (описание) геологических маршрутов.
  • Изучение и описание обнажений
  • Заключительный этап полевых работ
  • 9.4. Камеральный период геологосъёмочных работ
  • 9.4.1. Обработка и оформление полевого фактического материала.
  • Журнал (каталог) образцов (Форма №2) Левая сторона развернутого листа.
  • 9.4.2. Построение графических приложений.
  • 9.4.3. Составление отчета.
  • Рекомендуемая литература Основная:
  • Дополнительная:
  • Содержание программы и методические рекомендации для самостоятельныой работы
  • Программой дисциплины предусмотрено выполнение двух контрольных работ.
  • Перечень
  • «Мурманский государственный технический университет» Апатитский филиал мгту
  • Рабочая программа
  • I. Введение.
  • II. Краткое содержание программы практики.
  • Методика подготовки и проведения производственной геологической практики.
  • Приложение №1
  • I. Введение.
  • II. Краткое содержание программы практики.
  • Методика подготовки и проведения учебной геологической практики.
  • II. Полевой период
  • Приложение №1 календарный план
  • II. Полевой этап:
  • III. Камеральный период:
  • Складчатые пояса континентов

    Общая характеристика складчатых поясов. Крупные складчатые пояса, разделяющие и обрамляющие древние платформы, начали формироваться в позднем протерозое. Протяжённость складчатых поясов составляет многие тысячи км, а ширина обычно превышает тысячу км. Главными складчатыми поясами являются (рис. 8.16):

    1. Тихоокеанский (Круготихоокеанский) - альпийский.

    2. Урало-Охотский (или Урало-Монгольский) - герцинский.

    3. Средиземноморский (или Альпийско-Гималайский) - альпийский .

    4. Северо-Антлантический - каледонский .

    5. Арктический - киммерийский .

    Все перечисленные складчатые пояса возникли в своей основной части в пределах древних океанических бассейнов или на их периферии. Предшественником Урало-Охотского пояса был Палеоазиатский океан, Средиземноморского – океан Тетис, Северо-Антлантического – океан Япетус, Арктического – Бореальный океан. Свидетельством океанского происхождения складчатых поясов является присутствие в них офиолитов – реликтов океанской коры. Все названные океаны (кроме Тихого) были вторичными, образованными в результате раздробления и деструкции суперконтинента Пангея-I, объединявшего в среднем протерозое все современные древние платформы. В глобальном масштабе статистически намечаются определённые эпохи заложения бассейнов с океанской корой и окончания их развития с новообразованием континентальной коры – эпохи орогенеза.

    Главными эпохами орогенеза являлись байкальская (в конце докембрия),каледонская (в конце силура - начале девона),герцинская (в позднем палеозое),киммерийская (в конце юры – начале мела),альпийская (в олигоцене – квартере). Они завершают циклы продолжительностью 150-200 млн лет, впервые выделенные в конце XIX века французским геологом М.Бертраном и поэтому получили название в честь его –циклы Бертрана .

    Все складчатые пояса пережили более одного цикла Бертрана, и продолжительность их активного развития охватывает многие сотни млн. лет. Полный цикл эволюции складчатого пояса (от возникновения до закрытия океана) получил название цикла Вилсона (Уилсона), в честь одного из основоположников тектоники плит канадского геофизика Дж.Т. Вилсона, выделившего их в 1986 году. Циклы Вилсона проявляются в масштабе всего или почти всего пояса, в то время как составляющие их циклы Бертрана затрагивают лишь отдельные его части.

    Циклы Вилсона (Уилсона) включают 6 стадий: 1) континентальный рифтогенез (пример, Восточно-Африканская рифтовая система); 2) ранняя стадия (Красноморский рифт); 3) зрелая стадия (Атлантический океан); 4) стадия угасания (западная часть Тихого океана); 5) заключительная стадия (Средиземное море); 6) реликтовая стадия или геосутура (линия Инда в Гималаях). Для каждой стадии характерен определённый тип движений (поднятие, растяжение, сжатие, снова поднятие), тип осадков и магматитов.

    Существует два типа складчатых поясов: 1) межконтинентальные (или коллизионные); 2) окраинно-континентальные (или субдукционные).

    После окончания активного развития складчатого пояса орогенный режим сменяется платформенным. Отдельные части поясов могут быть эродированы и перекрыты осадочным чехлом, превращаясь в плиты молодых платформ (например, северная периферия Средиземноморского пояса ныне занята Западно-Европейской, Скифской и Туранской плитами). Другие части пояса в новейшую эпоху испытывали повторное горообразование уже во внутриконтинентальных условиях (например, Урал, Тянь-Шань, Алтай и ряд других горных сооружений Урало-Охотского пояса. Нередко внутри будущих поясов в результате проявления двух циклов Бертрана рифтинг, спрединг, закрытие океанского бассейна и орогенез, а между ними субплатформенный режим, проявляются дважды.

    Внутреннее строение складчатых поясов. Внутреннее строение складчатых поясов очень сложное, по сути, любой пояс представляет собой коллаж разнородных структурных элементов – обломков континентов, островных дуг, образований ложа океанов и их окраинных морей, внутриокеанских поднятий и др. Складчатые пояса принято подразделять на отдельные складчатые системы, находящиеся между блоками (срединными массивами или микроконтинентами) континентальной коры или между ними и настоящими континентами. Складчатые системы занимают в поясе окраинное положение и пограничное с континентальными платформами и имеют условно зональное строение. Выделяютсякраевые прогибы ,внешние ивнутренние зоны орогенов .

    При сочленении с плитой платформы отделяются от них краевыми или передовыми прогибами (Предуральский, Предкавказский, Предкарпатский), а при сочленении со щитом – прогибы отсутствуют (например, надвинутые скандинавские каледониды с Балтийским щитом). Прогибы вначале могут заполняться глубоководными глинисто-кремнистыми осадками, затем эвапоритами, молассами иногда в виде клиноформ. В последующем увеличивается роль тектонических покровов, олистостром и асимметричной складчатости.

    Внешние зоны периферических складчатых систем в отличие от внутренних зон более однообразны по строению и развитию. Они расположены на той-же континентальной коре, что и кора (фундамент) прилегающей платформы. Фундамент платформ ступеньчато, либо полого по системе листрических сбросов, погружается под осадочный комплекс внешних зон. Этот комплекс – образования шельфа и континентального склона, обычно сорван с фундамента и перемещён на десятки и более сотни км в сторону платформы и представляет собой чешуйчато-надвиговую структуру, иногда надвинутую на толщи передового прогиба (Аппалачи, Канадские Кордильеры, Большой Кавказ, Пиренеи, Альпы, Карпаты и т.д.). Ширина внешних зон колеблется от первых десятков до первых сотен км и максимально - до 900 км в Верхоянско-Колымской системе. На основании амагматичности этих зон в своё время Г.Штилле выделял эти структуры какмиогеосинклинали, в отличие от эвгеосинклиналей, т.е. настоящих высокомагматичных геосинклиналей внутренних зон.

    Граница внешних зон с внутренними достаточно условна и обычно проводится по первому от платформы «офиолитовому шву».

    Внутренние зоны орогенов – складчатых поясов и складчатых систем отличаются большой разнородностью и разнообразием. Наиболее характерный элемент для них – офиолитовые покровы разного происхождения (спрединговых зон, окраинных морей, энсиматических вулканических дуг). Они могут располагаться либо на осадочных образованиях внутреннего края внешних зон, либо на их кристаллическом фундаменте в результате обдукции. При этом фундамент может испытать ремобилизацию при прогреве тепловыми потоками, в результате чего образуются гранитогнейсовые купола.

    Во внутренних частях коллизионных межконтинентальных орогенов нередко наблюдаются покровы кристаллических пород, ранее принадлежавших другому континентальному ограничению бассейна с океанической корой. Периферическим системам этих орогенов свойственно асимметричное строение с вергентностью, направленной к смежным платформам и распространяющейся на внутренние крылья передовых прогибов.

    В окраинно-континентальных орогенах их обращённое к океану крыло образовано обычно изоклинально-чешйчато-надвиговыми комплексами аккреционной призмы, включающими серпентенитовый меланж и тектонические обдуцированные линзы офиолитов. Для этих зон характерен высокобарный метаморфизм (высокого давления и низких температур). В их тылу простираются пояса гранитных батолитов и высокотемпературных метаморфитов. Окраинно-континентальные складчатые пояса характеризуются дивергентным строением, связанным с поддвиганием под них с одной стороны океанической плиты (субдукция типа Б), а с другой – континентальной платформы (субдукция типа А) (например, Кордильеры Северной и Южной Америки).

    Развитие складчатых поясов. Необходимо отметить, что по простиранию складчатых поясов происходят существенно различающиеся изменения в развитии, структуре, ширине и др. параметров. В основном они связаны с конфигурацией границ сталкивающихся в процессе конвергенции литосферных плит.

    С появлением тектоники плит история складчатых поясов рассматривается в рамках идей цикла Вилсона. Но необходимо учитывать, что развитие складчатых поясов шло разными путями, а потому имеет много индивидуальных черт. Общим является для них то, что бассейн с корой океанического типа, в конце концов, превращается в ороген с мощной (до 60-70 км) и зрелой континентальной корой, т.е. обстановка преобладающего растяжения и опускания сменяется в конце цикла обстановкой сжатия и поднятия. Разнообразие проявляется лишь в различии условий заложения бассейнов океанического типа и условий формирования орогенов, особенно на средних стадиях их развития.

    В целом, выделяется несколько стадий (как указывалось выше) в развитии складчатых поясов:

    1) Заложение подвижных поясов.

    2) Начальная стадия развития подвижных поясов.

    3) Зрелая стадия подвижных поясов.

    4) Орогенная стадия развития подвижных поясов (главная стадия образования складчатых поясов), разделяющаяся на две подстадии: а) раннеорогенную, когда горообразование идёт за счёт тектонического скучивания, вызванного тангенциальным сжатием, сопровождающимся метаморфизмом, гранитизацией и накоплением моласс; б) позднеорогенную, когда темп воздымания складчатого сооружения резко ускоряется с сопутствующим лавинным осадконакоплением, интенсивной вулканической деятельностью, тектоническим скучиванием, региональным метаморфизмом и гранитизацией.

    5) Тафрогенная стадия развития подвижных поясов. Орогенная стадия длится не более первых десятков млн. лет, а по её окончании наступает релаксация напряжений тангенциального сжатия и оно сменяется растяжением. Горные сооружения как бы расползаются по листрическим сбросам с образованием тафрогенов (грабенов), часто выполненных континентальными угленосными, красноцветными осадками, перемежающимися с покровами толеитовых базальтов. Эта стадия в определённом смысле гомологична раннеавлакогенной стадии развития древних платформ.

    Складчатость процесс изменения залегания горных пород в земной коре, проявляющийся в изгибании различных по форме (пластообразных и др.) и по масштабу геологических тел под влиянием тектонических движений и отчасти экзогенных процессов (более широкий термин – «складкообразование»).

    Складчатость может проявляться в краткий либо длительный промежуток геологического времени. Длительные и многоактные процессы складчатости называются эпохами складчатости, имеющими общепланетарное распространение. Например, саамская или архейская, карельская, свекофеннская (1850-1600 млн. лет назад), готская (~12000 млн. лет назад), свеконорвежская или дальсландская (гренвильская) (1000-800 млн. лет назад), байкальская (650-550 млн. лет назад), каледонская или салаирская (500-395 млн. лет назад), герцинская (395-210 млн. лет назад), киммерийская (от 210 млн. назад до олигоцена), альпийская (олигоцен – до настоящего времени) складчатости. Кроме того, существуют генетические, кинематические и динамические классификации складчатости.

    В генетической классификации выделяются эндогенные покровные типы (складчатость регионального сдавливания, гравитационного скольжения, диапировые, связанные с разрывами и перемещениями магмы и др.) и глубинные типы (складчатость вертикального течения и т.д.).

    В кинематической классификации выделяется три типа: складчатость общего смятия (полная или голоморфная), проявляющаяся при горизонтальном или наклонном осевом сжатии; прерывистая или идиоморфная; складчатость, проявляющаяся при местном вертикальном сжатии; складчатость, проявляющаяся гравитационным путем.

    Кроме вышеуказанных типов, выделяются следующие разновидности складчатости: глыбовая, нагнетания, волочения, течения, скольжения, дисгармоничная, унаследованная, прерывистая, поперечная и др.

    Формированием магматических и осадочных комплексов. Протяжённость складчатых поясов составляет многие тысячи километров, ширина превышает тысячу километров.

    Основные складчатые пояса Земли

    На Земле насчитывают 5 основных складчатых поясов:

    • Тихоокеанский пояс. Окружает , проходя по краю , и Америки и . Его восточную и западную часть иногда рассматривают по отдельности. Восточно-Тихоокеанский пояс называют ещё Кордильерским. С внешней стороны Тихоокеанского пояса лежит несколько древних платформ (): на севере — , на западе — , и Австралийская, на юге — Антарктическая, на востоке — Северо- и Южно-Американская .
    • или Урало-Охотский пояс. Тянется примерно от вдоль на юг. Дойдя до , сворачивает на восток, после чего простирается через , и примерно до . Его северо-западная часть (идущая с севера на юг) называется Урало-Сибирским поясом, а юго-восточная (идущая с запада на восток) — Центрально-Азиатским. Своей северной частью соединяется с Северо-Атлантическим поясом, восточной — с Западно-Тихоокеанским, а серединой — со . Урало-Монгольский пояс окаймляет , отделяя её от , Таримской и .
    В наблюдаются эпохи складчатости [ ] :
    • Байкальские — вокруг , Тимано-Печорская область, Северный , .
    • Каледонские — и по .
    • Герцинские — с , Южный (), от до .
    • Салаирские — восточная часть Алтае-Саянской области, Северная Монголия.
    В имеются эпигерцинские плиты [ ] :
    • Западно-Сибирская.
    • (Северная и центральная часть).
    • Таймырская (Северо-Сибирская).
    • (Альпийско-Гималайский). Начинается в (где смыкается с Восточно-Тихоокеанским поясом). Прерывается , после чего тянется на восток по странам , и . В районе почти соединяется с . Далее проходит к северу от через страны и кончается в , где граничит с Западно-Тихоокеанским поясом. К югу от Средиземноморского пояса лежат обломки сверхконтинента , а к северу — ряд других платформ: Северо-Американская, Таримская и .
    • Северо-Атлантический пояс. Тянется вдоль восточной части Северной Америки на северо-восток. Прерывается Атлантическим океаном, после чего проходит по северо-западному краю Европы. На юге соединяется со , на севере — с Арктическим и . Разделяет Северо-Американский и кратоны . Его норвежская часть известна как Феннмаркский пояс, Шотландская с Ирландской — Грампианский, а американская — Ньюфаундлендо-Аппалачский [ ] .
    В Северо-Атлантическом поясе наблюдаются такие эпохи складчатости [ ] :
    • Каледонские — , восточная часть , Северные и .
    • Герцинские — Южные .
    • Альпийские — .
    • Арктический пояс тянется вдоль северного края Северной Америки и Азии — от через северо-восточную до . В районе Гренландии он смыкается с Северо-Атлантическим поясом, а в районе Таймыра и (на своём восточном конце) — с . К югу от Арктического пояса лежат Северо-Американский и кратоны, а к северу — Гиперборейский (Арктида) . Иногда Арктический пояс называют Инуитский [ ] .
    В Арктическом поясе наблюдаются такие эпохи складчатости [ ] :
    • Каледонские — и Северная часть Гренландии.

    Внутреннее строение складчатых поясов

    Все складчатые пояса состоят из множества разнородных элементов. Это могут быть обломки континентов, фрагменты дна океанов и их окраинных морей, а также внутриокеанические поднятия. В частности, там бывают и очень крупные (размером в сотни километров) обломки . Ранее такие обломки называли срединными массивами, а сейчас (как и аналогичные структуры в океанах) — . Части складчатого пояса, разделённые континентами и/или микроконтинентами, называют складчатыми системами . К таким системам относятся, например, Уральская, Южно- и Северо-Тяньшаньская, и др. В пределах складчатого пояса несколько складчатых систем со сходной структурой или происхождением могут образовывать складчатую область .

    Передовой (краевой) прогиб — прогиб, расположенный между платформой и складчатой областью, превращающейся в орогенный пояс.

    Внешняя зона периферической складчатой системы — зона, образующаяся путём роста и слияния многочисленных островных дуг, аккреционных призм, отмерших дуг, подводных хребтов и океанических плато.

    Внутренняя зона орогена — зона столкновения двух или более крупных континентальных блоков и характеризующаяся сильным сжатием за счёт их надвигания друг на друга и метаморфической переработки.

    Развитие складчатых поясов

    Все 5 основных складчатых поясов образовались в пределах древних океанов или (в случае Тихоокеанского пояса) на их окраине. На это указывает, в частности, наличие в них большого количества — остатков поднятой океанической коры и литосферы. возник на месте , — , Северо-Атлантический пояс — океана , Арктический пояс — . Все эти океаны, кроме Тихого, появились при распаде суперконтинента Пангеи, который существовал в середине и включал все современные .

    Складчатые пояса зародились в позднем протерозое. С тех пор в их пределах происходило множество масштабных процессов. Появлялись новые глубоководные моря и различных типов; позже края этих морей смыкались друг с другом и с островами, приводя к появлению горных систем. Одни и те же процессы даже в разных частях одного пояса могли происходить в разное время. Тем не менее прослеживаются эпохи, когда эти процессы были особенно масштабными .

    • (конец );
    • (конец — начало ). Сформировался Северо-Атлантический складчатый пояс;
    • (поздний ). Сформировалась большая часть ;
    Подвижные складчатые пояса неогея представляют собой линейно вытянутые, заключенные между кратонами (древними платформами), древние и современные океанические, окраинно-континентальные и внутриконтинентальные области, которые в течение более или менее продолжительного отрезка геологического времени (вероятно, не менее периода) были мобильными в отличие от лабильных (относительно стабильных) платформенных областей, отличаясь от последних следующими характеристиками: 1) повышенными на 1-2 порядка скоростями вертикальных движений; 2) резкой дифференцированностью и контрастностью движений; 3) неполной компенсацией поднятий денудацией, а опусканий - аккумуляцией; 4) резкой изменчивостью фаций вкрест простирания поясов.

    Крупные складчатые пояса, разделяющие и обрамляющие древние платформы с докембрийским (архей, нижний протерозой) фундаментом, начали формироваться в позднем протерозое. Протяженность складчатых поясов составляет многие тысячи километров, ширина обычно превышает тысячу километров. Главными складчатыми поясами планеты являются следующие (Рис. 16.1 ) :

    1. Тихоокеанский (Круготихоокеанский) пояс , обрамляющий впадину Тихого океана и отделяющий ее от древних платформ (кратонов): Гиперборейской на севере, Сибирской, Китайско-Корейской, Южно-Китайской, Австралийской на западе, Антарктической на юге и Северо- и Южно-Американских на востоке. Этот пояс нередко делится на два – Западно- и Восточно-Тихоокеанские ; последний именуется еще Кордильерским .

    2. Урало-Охотский (Урало-Монгольский, Урало-Азиатский) пояс , простирающийся от Баренцева и Карского до Охотского и Японского морей и отделяющий Восточно-Европейскую и Сибирскую древние платформы от Таримской и Китайско-Корейской. Имеет дугообразную форму с выпуклостью к юго-западу. Северная часть пояса простирается субмеридионально и именуется Урало-Сибирским поясом , южная простирается субширотно и называется Центральноазиатским поясом . На севере сочленяется с Северо-Атлантическим и Арктическим поясами, на востоке – с Западно-Тихоокеанским.

    3. Средиземноморский пояс пересекает земной шар в широтном направлении от Карибского до Южно-Китайского моря, отделяя южную группу древних платформ, до середины юры составлявшую суперконтинент Гондвану, от северной группы: Северо-Американской, Восточно-Европейской, Таримской, Китайско-Корейской. На западе сочленяется с Восточно-Тихоокеанским (Кордильерским), на востоке – с Западно-Тихоокеанским поясами. После полного раскрытия в середине мела Атлантического океана пояс замкнулся на западе, упираясь в последний. В районе Южного Тянь-Шаня практически смыкается с Урало-Охотским поясом.

    4. Северо-Атлантический пояс отделяет Северо-Американский кратон от Восточно-Европейского и на юге сочленяется со Средиземноморским поясом, а на севере – с Арктическим на западе и Урало-Охотским на востоке.

    5. Арктический пояс протягивается от Таймыра до северо-восточной Гренландии вдоль современных северных окраин Азии и Северной Америки, отделяя Сибирский и Северо-Американский кратоны от Гиперборейского (Арктиды). На западе он сочленяется с Урало-Охотским поясом, на востоке – с Северо-Атлантическим.

    Все перечисленные складчатые пояса возникли в своей основной части в пределах древних океанских бассейнов или на их периферии (Тихий океан). Предшественником Урало-Охотского пояса был Палеоазиатский океан, Средиземноморского пояса – океан Тетис, Северо-Атлантического пояса – океан Япетус, Арктического пояса – Бореальный океан. Свидетельством океанского происхождения складчатых поясов является присутствие в них многочисленных выходов офиолитов – реликтов океанской коры и литосферы. Все названные океаны, кроме Тихого, были вторичными, образованными в результате раздробления и деструкции суперконтинента Родиния , объединявшей в среднем протерозое все современные древние платформы. Доказательством такого их происхождения является присутствие в них многочисленных обломков раннедокембрийской континентальной коры – микроконтинентов и несогласное срезание контурами поясов элементов внутренней структуры древних платформ; примером последнего могут служить восточные и южные ограничения Восточно-Европейской платформы.

    Со времени заложения в позднем протерозое складчатые пояса прошли сложную и длительную историю развития. Эта история включала заложение в их пределах новых глубоководных морских бассейнов с корой океанского или переходного типа, возникновение среди них вулканических и невулканических островных дуг, замыкание этих и ранее существовавших бассейнов в результате столкновения ограничивающих их континентальных глыб или островных дуг или, наконец, этих дуг между собой или с континентальными глыбами. Эти процессы протекали разновременно в разных частях одного и того же пояса. Тем не менее в глобальном масштабе статистически намечаются определенные эпохи заложения бассейнов с океанской корой и окончания их развития с новообразованием континентальной коры – эпохи орогенеза .

    Главными эпохами орогенеза являлись байкальская в конце докембрия, каледонская в конце силура – начале девона, герцинская в позднем палеозое, киммерийская в конце юры – начале мела, альпийская в олигоцене – квартере. Они завершают циклы продолжительностью 150-200 млн. лет, впервые выделенные в конце XIX в. французским геологом М. Бертраном и поэтому заслуживающие название циклов Бертрана . Каледонская эпоха явилась завершающей для Северо-Атлантического складчатого пояса, герцинская – для большей части Урало-Охотского пояса, киммерийской эпохой завершилось развитие Арктического пояса. Тихоокеанский и Средиземноморский пояса сохранили свою высокую подвижность до наших дней. Все эти складчатые пояса пережили более одного цикла Бертрана, и продолжительность их активного развития охватывает многие сотни миллионов лет. Полный цикл эволюции складчатого пояса, от возникновения до закрытия океана, получил название цикла Вилсона , в честь канадского геофизика, одного из основоположников тектоники плит. Циклы Вилсона проявляются в масштабе всего или почти всего пояса, в то время как составляющие их циклы Бертрана и завершающие их эпохи орогенеза затрагивают лишь отдельные его части.

  • Строение поверхностей наслоения. Определение кровли и подошвы слоёв
  • Сущность и условия образования слоистых толщ
  • 1.2. Первичные (ненарушенные) и нарушенные
  • 1.2.1.Горизонтальное залегание слоёв
  • 1.2.2. Наклонное залегание слоёв
  • 1.2.3. Нормальное и опрокинутое залегание
  • Определение элементов залегания наклонно залегающих геологических границ.
  • Определение истинной мощности слоя при наклонном залегании
  • Построение выхода пласта на поверхность на карте с топографической основой
  • 1.2.4. Согласное и несогласное залегание пород
  • Типы несогласий
  • Строение поверхностей несогласий.
  • Критерии установления несогласий при геологическом картировании.
  • Глава 2. Геологическое изучение разрывов в горных породах
  • 2.1. Трещины и кливаж в горных породах (разрывы без смещения).
  • 2.1.1. Трещины и трещиноватость
  • 2.1.2. Нетектонические трещины.
  • 2.1.3. Прототектонические трещины
  • 2.1.4. Тектонические трещины
  • Трещины отрыва
  • Трещины скалывания
  • 2.1.5. Отдельность
  • 2.1.6. Изучение трещиноватости
  • 2.2. Разрывы со смещением
  • 2.2.1. Сбросы
  • 2.2.2. Взбросы
  • 2.2.3. Грабены
  • 2.2.4. Горсты
  • 2.2.5. Сдвиги
  • 2.2.6. Раздвиги
  • 2.2.7. Надвиги
  • 2.2.8. Покровы
  • 2.2.9. Механизм образования и происхождение разрывов Образование или происхождение разрывов
  • 2.2.10. Определение возраста, типа и структурных элементов разрывов Определение возраста
  • Определение типов разрывных нарушений
  • Определение направления смещения крыльев
  • Определение амплитуды смещения
  • Признаки наличия разрывных нарушений
  • 1) По геологическим признакам
  • 2) По геоморфологическим признакам:
  • 3) По гидрологическим признакам:
  • Условные обозначения разрывных нарушений
  • Глава 3: Складчатые формы залегания пород
  • 3.1. Складки и их элементы и параметры
  • 3.2. Классификация складок
  • 3.2.1. Морфологическая классификация
  • 3.2.2. Генетическая классификация складок
  • Складки, обусловленные геологическими условиями
  • 3.3. Изучение складчатых форм
  • 3.4. Изображение складчатых форм
  • Литература
  • Глава 4. Геологическое картирование интрузивных образований
  • 4.1. Общая характеристика форм и особенностей залегания интрузивных пород
  • 4.2. Полевое изучение интрузивов и элементы структурно-петрологического картирования
  • Оконтуривание интрузивов
  • Определение характера контакта
  • Методы определения положения и элементов залегания контактов интрузивных тел
  • Восстановление морфологии эродированной кровли интрузивов
  • Определение возраста интрузий
  • Определение возраста интрузий на разрезе и геологической карте
  • Определение верха и низа (кровли и подошвы)
  • 4.3. Внутреннее строение интрузивных тел
  • 4.3.1. Внутреннее строение недифференцированных интрузивов
  • 4.3.2. Внутреннее строение дифференцированных интрузивов
  • 4.3.3. Внутреннее строение расслоенных интрузивов
  • 4.3.4. Изучение прототектоники интрузивных пород
  • Структурный блок
  • Глава 5: Геологическое картирование вулканических пород
  • 5.1. Вулканические аппараты и их строение
  • 5.1.1. Элементы вулканического аппарата
  • 5.1.2. Разновидности вулканов и их строение
  • 5.2 Особенности образования и условия залегания вулканических пород
  • 5.2.1. Лавовые потоки
  • 5.2.2. Пирокластические пласты
  • 5.2.3. Покровы (покровные и эксплозивные фации)
  • 5.2.4. Экструзивные фации
  • 5.2.5.Жерловые фации
  • 5.2.6. Субвулканические фации
  • 5.2.7. Пирокластические и пирокласто-осадочные фации
  • 5.3 Внутреннее строение
  • 5.3.1. Внутреннее строение лавовых потоков и экструзий
  • 5.3.2. Внутреннее строение пластов вулканокластических пород
  • 5.3.3. Внутреннее строение пластов вулканогенно-осадочных пород
  • 5.3.4. Полевое изучение вулканогенных пород
  • Палеовулканологические исследования
  • Глава 6: Геологическое картирование метаморфических пород
  • 6.1. Метаморфизм и метаморфические породы
  • 6.1.1. Типы и фации метаморфизма
  • 6.1.2. Типы метаморфических комплексов и основные разновидности метаморфических пород
  • Метаморфиты
  • Динамометаморфические породы
  • Мигматиты
  • Метасоматиты
  • 6.2. Общие особенности строения и залегания метаморфических пород
  • 6.2.1. Морфология тел метаморфических пород и формы залегания
  • 6.2.2. Текстуры и структурные элементы метаморфических пород
  • 6.2.3. Структурные формы метасоматических пород
  • 6.3. Методы изучения метаморфических толщ
  • 6.3.1. Петрографические методы изучения метаморфических пород
  • 6.3.2. Литологические методы метаморфических пород
  • 6.3.3. Петрогеохимические методы определения первичной природы метаморфическихпород
  • 6.3.4. Изотопно-геохимические методы
  • 6.3.5. Стратиграфические методы
  • 6.3.6. Методы формационного анализа
  • 6.3.7. Структурный анализ
  • Определение разновозрастности и последовательности развития структурных форм и структурных элементов.
  • Построение структурно-возрастной шкалы.
  • Определение последовательности эндогенных процессов.
  • Построение шкалы относительной последовательности эндогенных процессов.
  • Выделение тектоно-метаморфических циклов.
  • Выделение и корреляция разновозрастных свк (структурно-вещественных комплексов) с моно- и полициклическим развитием.
  • 6.3.8. Геофизические методы
  • 6.3.9. Дешифрирование аэрофото- и космофотоснимков
  • 6.4 Изображение метаморфических пород на геологической карте
  • 6.4.1. Особенности картирования метаморфических образований
  • Документация и отображение структурных элементов дислоцированных метаморфических пород
  • Литература
  • 7.1. Разновидности кольцевых структур
  • 7.1.1. Метеоритные кратеры и астроблемы и
  • 7.1.2. Соляные купола
  • 8.1. Модели вертикальной (внутренней) и латеральной неоднородности
  • 8.2. Основные этапы образования и развития земной коры
  • 8.3. Внутреннее строение Земли
  • Земная кора
  • Литосфера и астеносфера
  • Тектоносфера
  • 8.4. Основные структурные единицы литосферы
  • 8.4.1. Литосферные плиты
  • 8.4.2. Границы литосферных плит
  • 8.4.3. Внутренние области океанов
  • Срединно-океанические хребты
  • Трансформные разломы
  • Горячие точки
  • Абиссальные равнины
  • Внутриплитные возвышенности и хребты
  • Микроконтиненты
  • Возраст и происхождение океанов
  • 8.4.4. Области перехода континент–океан
  • Пассивные континентальные окраины
  • Активные континентальные окраины
  • Вулканические дуги
  • Трансформные окраины
  • 8.4.5. Области континентов
  • Континентальные платформы
  • Складчатые пояса континентов
  • Области внутриконтинентального орогенеза
  • Террейны
  • 9.1. Масштабы и виды геологосъёмочных работ
  • 9.1.1. Масштабы геологических съёмок
  • 9.1.2. Виды геологических съёмок
  • 9.2. Основы организации геологосъёмочных работ
  • 9.2.1. Предварительное изучение района работ
  • 9.2.2. Составление проекта геолого-съёмочных и поисковых работ
  • 9.3. Основы проведения геологосъёмочных работ
  • 9.3.1. Полевой период геологосъёмочных работ
  • 9.3.2. Проведение геологосъёмочных работ
  • Геологосъёмочные маршруты
  • Ведение (описание) геологических маршрутов.
  • Изучение и описание обнажений
  • Заключительный этап полевых работ
  • 9.4. Камеральный период геологосъёмочных работ
  • 9.4.1. Обработка и оформление полевого фактического материала.
  • Журнал (каталог) образцов (Форма №2) Левая сторона развернутого листа.
  • 9.4.2. Построение графических приложений.
  • 9.4.3. Составление отчета.
  • Рекомендуемая литература Основная:
  • Дополнительная:
  • Содержание программы и методические рекомендации для самостоятельныой работы
  • Программой дисциплины предусмотрено выполнение двух контрольных работ.
  • Перечень
  • «Мурманский государственный технический университет» Апатитский филиал мгту
  • Рабочая программа
  • I. Введение.
  • II. Краткое содержание программы практики.
  • Методика подготовки и проведения производственной геологической практики.
  • Приложение №1
  • I. Введение.
  • II. Краткое содержание программы практики.
  • Методика подготовки и проведения учебной геологической практики.
  • II. Полевой период
  • Приложение №1 календарный план
  • II. Полевой этап:
  • III. Камеральный период:
  • Складчатые пояса континентов

    Общая характеристика складчатых поясов. Крупные складчатые пояса, разделяющие и обрамляющие древние платформы, начали формироваться в позднем протерозое. Протяжённость складчатых поясов составляет многие тысячи км, а ширина обычно превышает тысячу км. Главными складчатыми поясами являются (рис. 8.16):

    1. Тихоокеанский (Круготихоокеанский) - альпийский.

    2. Урало-Охотский (или Урало-Монгольский) - герцинский.

    3. Средиземноморский (или Альпийско-Гималайский) - альпийский .

    4. Северо-Антлантический - каледонский .

    5. Арктический - киммерийский .

    Все перечисленные складчатые пояса возникли в своей основной части в пределах древних океанических бассейнов или на их периферии. Предшественником Урало-Охотского пояса был Палеоазиатский океан, Средиземноморского – океан Тетис, Северо-Антлантического – океан Япетус, Арктического – Бореальный океан. Свидетельством океанского происхождения складчатых поясов является присутствие в них офиолитов – реликтов океанской коры. Все названные океаны (кроме Тихого) были вторичными, образованными в результате раздробления и деструкции суперконтинента Пангея-I, объединявшего в среднем протерозое все современные древние платформы. В глобальном масштабе статистически намечаются определённые эпохи заложения бассейнов с океанской корой и окончания их развития с новообразованием континентальной коры – эпохи орогенеза.

    Главными эпохами орогенеза являлись байкальская (в конце докембрия),каледонская (в конце силура - начале девона),герцинская (в позднем палеозое),киммерийская (в конце юры – начале мела),альпийская (в олигоцене – квартере). Они завершают циклы продолжительностью 150-200 млн лет, впервые выделенные в конце XIX века французским геологом М.Бертраном и поэтому получили название в честь его –циклы Бертрана .

    Все складчатые пояса пережили более одного цикла Бертрана, и продолжительность их активного развития охватывает многие сотни млн. лет. Полный цикл эволюции складчатого пояса (от возникновения до закрытия океана) получил название цикла Вилсона (Уилсона), в честь одного из основоположников тектоники плит канадского геофизика Дж.Т. Вилсона, выделившего их в 1986 году. Циклы Вилсона проявляются в масштабе всего или почти всего пояса, в то время как составляющие их циклы Бертрана затрагивают лишь отдельные его части.

    Циклы Вилсона (Уилсона) включают 6 стадий: 1) континентальный рифтогенез (пример, Восточно-Африканская рифтовая система); 2) ранняя стадия (Красноморский рифт); 3) зрелая стадия (Атлантический океан); 4) стадия угасания (западная часть Тихого океана); 5) заключительная стадия (Средиземное море); 6) реликтовая стадия или геосутура (линия Инда в Гималаях). Для каждой стадии характерен определённый тип движений (поднятие, растяжение, сжатие, снова поднятие), тип осадков и магматитов.

    Существует два типа складчатых поясов: 1) межконтинентальные (или коллизионные); 2) окраинно-континентальные (или субдукционные).

    После окончания активного развития складчатого пояса орогенный режим сменяется платформенным. Отдельные части поясов могут быть эродированы и перекрыты осадочным чехлом, превращаясь в плиты молодых платформ (например, северная периферия Средиземноморского пояса ныне занята Западно-Европейской, Скифской и Туранской плитами). Другие части пояса в новейшую эпоху испытывали повторное горообразование уже во внутриконтинентальных условиях (например, Урал, Тянь-Шань, Алтай и ряд других горных сооружений Урало-Охотского пояса. Нередко внутри будущих поясов в результате проявления двух циклов Бертрана рифтинг, спрединг, закрытие океанского бассейна и орогенез, а между ними субплатформенный режим, проявляются дважды.

    Внутреннее строение складчатых поясов. Внутреннее строение складчатых поясов очень сложное, по сути, любой пояс представляет собой коллаж разнородных структурных элементов – обломков континентов, островных дуг, образований ложа океанов и их окраинных морей, внутриокеанских поднятий и др. Складчатые пояса принято подразделять на отдельные складчатые системы, находящиеся между блоками (срединными массивами или микроконтинентами) континентальной коры или между ними и настоящими континентами. Складчатые системы занимают в поясе окраинное положение и пограничное с континентальными платформами и имеют условно зональное строение. Выделяютсякраевые прогибы ,внешние ивнутренние зоны орогенов .

    При сочленении с плитой платформы отделяются от них краевыми или передовыми прогибами (Предуральский, Предкавказский, Предкарпатский), а при сочленении со щитом – прогибы отсутствуют (например, надвинутые скандинавские каледониды с Балтийским щитом). Прогибы вначале могут заполняться глубоководными глинисто-кремнистыми осадками, затем эвапоритами, молассами иногда в виде клиноформ. В последующем увеличивается роль тектонических покровов, олистостром и асимметричной складчатости.

    Внешние зоны периферических складчатых систем в отличие от внутренних зон более однообразны по строению и развитию. Они расположены на той-же континентальной коре, что и кора (фундамент) прилегающей платформы. Фундамент платформ ступеньчато, либо полого по системе листрических сбросов, погружается под осадочный комплекс внешних зон. Этот комплекс – образования шельфа и континентального склона, обычно сорван с фундамента и перемещён на десятки и более сотни км в сторону платформы и представляет собой чешуйчато-надвиговую структуру, иногда надвинутую на толщи передового прогиба (Аппалачи, Канадские Кордильеры, Большой Кавказ, Пиренеи, Альпы, Карпаты и т.д.). Ширина внешних зон колеблется от первых десятков до первых сотен км и максимально - до 900 км в Верхоянско-Колымской системе. На основании амагматичности этих зон в своё время Г.Штилле выделял эти структуры какмиогеосинклинали, в отличие от эвгеосинклиналей, т.е. настоящих высокомагматичных геосинклиналей внутренних зон.

    Граница внешних зон с внутренними достаточно условна и обычно проводится по первому от платформы «офиолитовому шву».

    Внутренние зоны орогенов – складчатых поясов и складчатых систем отличаются большой разнородностью и разнообразием. Наиболее характерный элемент для них – офиолитовые покровы разного происхождения (спрединговых зон, окраинных морей, энсиматических вулканических дуг). Они могут располагаться либо на осадочных образованиях внутреннего края внешних зон, либо на их кристаллическом фундаменте в результате обдукции. При этом фундамент может испытать ремобилизацию при прогреве тепловыми потоками, в результате чего образуются гранитогнейсовые купола.

    Во внутренних частях коллизионных межконтинентальных орогенов нередко наблюдаются покровы кристаллических пород, ранее принадлежавших другому континентальному ограничению бассейна с океанической корой. Периферическим системам этих орогенов свойственно асимметричное строение с вергентностью, направленной к смежным платформам и распространяющейся на внутренние крылья передовых прогибов.

    В окраинно-континентальных орогенах их обращённое к океану крыло образовано обычно изоклинально-чешйчато-надвиговыми комплексами аккреционной призмы, включающими серпентенитовый меланж и тектонические обдуцированные линзы офиолитов. Для этих зон характерен высокобарный метаморфизм (высокого давления и низких температур). В их тылу простираются пояса гранитных батолитов и высокотемпературных метаморфитов. Окраинно-континентальные складчатые пояса характеризуются дивергентным строением, связанным с поддвиганием под них с одной стороны океанической плиты (субдукция типа Б), а с другой – континентальной платформы (субдукция типа А) (например, Кордильеры Северной и Южной Америки).

    Развитие складчатых поясов. Необходимо отметить, что по простиранию складчатых поясов происходят существенно различающиеся изменения в развитии, структуре, ширине и др. параметров. В основном они связаны с конфигурацией границ сталкивающихся в процессе конвергенции литосферных плит.

    С появлением тектоники плит история складчатых поясов рассматривается в рамках идей цикла Вилсона. Но необходимо учитывать, что развитие складчатых поясов шло разными путями, а потому имеет много индивидуальных черт. Общим является для них то, что бассейн с корой океанического типа, в конце концов, превращается в ороген с мощной (до 60-70 км) и зрелой континентальной корой, т.е. обстановка преобладающего растяжения и опускания сменяется в конце цикла обстановкой сжатия и поднятия. Разнообразие проявляется лишь в различии условий заложения бассейнов океанического типа и условий формирования орогенов, особенно на средних стадиях их развития.

    В целом, выделяется несколько стадий (как указывалось выше) в развитии складчатых поясов:

    1) Заложение подвижных поясов.

    2) Начальная стадия развития подвижных поясов.

    3) Зрелая стадия подвижных поясов.

    4) Орогенная стадия развития подвижных поясов (главная стадия образования складчатых поясов), разделяющаяся на две подстадии: а) раннеорогенную, когда горообразование идёт за счёт тектонического скучивания, вызванного тангенциальным сжатием, сопровождающимся метаморфизмом, гранитизацией и накоплением моласс; б) позднеорогенную, когда темп воздымания складчатого сооружения резко ускоряется с сопутствующим лавинным осадконакоплением, интенсивной вулканической деятельностью, тектоническим скучиванием, региональным метаморфизмом и гранитизацией.

    5) Тафрогенная стадия развития подвижных поясов. Орогенная стадия длится не более первых десятков млн. лет, а по её окончании наступает релаксация напряжений тангенциального сжатия и оно сменяется растяжением. Горные сооружения как бы расползаются по листрическим сбросам с образованием тафрогенов (грабенов), часто выполненных континентальными угленосными, красноцветными осадками, перемежающимися с покровами толеитовых базальтов. Эта стадия в определённом смысле гомологична раннеавлакогенной стадии развития древних платформ.

    Складчатость процесс изменения залегания горных пород в земной коре, проявляющийся в изгибании различных по форме (пластообразных и др.) и по масштабу геологических тел под влиянием тектонических движений и отчасти экзогенных процессов (более широкий термин – «складкообразование»).

    Складчатость может проявляться в краткий либо длительный промежуток геологического времени. Длительные и многоактные процессы складчатости называются эпохами складчатости, имеющими общепланетарное распространение. Например, саамская или архейская, карельская, свекофеннская (1850-1600 млн. лет назад), готская (~12000 млн. лет назад), свеконорвежская или дальсландская (гренвильская) (1000-800 млн. лет назад), байкальская (650-550 млн. лет назад), каледонская или салаирская (500-395 млн. лет назад), герцинская (395-210 млн. лет назад), киммерийская (от 210 млн. назад до олигоцена), альпийская (олигоцен – до настоящего времени) складчатости. Кроме того, существуют генетические, кинематические и динамические классификации складчатости.

    В генетической классификации выделяются эндогенные покровные типы (складчатость регионального сдавливания, гравитационного скольжения, диапировые, связанные с разрывами и перемещениями магмы и др.) и глубинные типы (складчатость вертикального течения и т.д.).

    В кинематической классификации выделяется три типа: складчатость общего смятия (полная или голоморфная), проявляющаяся при горизонтальном или наклонном осевом сжатии; прерывистая или идиоморфная; складчатость, проявляющаяся при местном вертикальном сжатии; складчатость, проявляющаяся гравитационным путем.

    Кроме вышеуказанных типов, выделяются следующие разновидности складчатости: глыбовая, нагнетания, волочения, течения, скольжения, дисгармоничная, унаследованная, прерывистая, поперечная и др.

    Складчатые пояса. Урало-Монгольский Альпийско-Гималайский (Средиземноморский) Тихоокеанский. 3. 1. 2.

    Картинка 24 из презентации «Геологическое строение» к урокам географии на тему «Природа России»

    Размеры: 960 х 720 пикселей, формат: jpg. Чтобы бесплатно скачать картинку для урока географии, щёлкните по изображению правой кнопкой мышки и нажмите «Сохранить изображение как...». Для показа картинок на уроке Вы также можете бесплатно скачать презентацию «Геологическое строение.ppt» целиком со всеми картинками в zip-архиве. Размер архива - 3466 КБ.

    Скачать презентацию

    Природа России

    «Районирование России география 9 класс» - Уральский. Варианты районирования в России. Северо- Кавказский. Районирование – важнейший метод изучения географии. Сопоставьте предмет науки и методы изучения. Северный. Западно- Сибирский. Поволжский. Северо- Западный. Варианты районирования. Дальне- восточный. 9 класс. Задание №1. Задание №3.

    «Геологическое строение России» - Местами чехол отсутствует – щиты – выход кристаллического фундамента на поверхность. 1. Геологическая карта. Какие периоды были влажными на Земле? Древние участки - платформы. цель: Выявить основные этапы формирования земной коры на территории России. М Е З О З О Й С К А я.

    «Россия на карте мира» - Граница России. Изменение геополитического положения России в сравнении с СССР. Символика России. Крупнейшие внешнеторговые партнеры России (с 1995 г.). Карта России. Карта политическая мира. Широко ты, Русь, по лицу Земли В красе царственной развернулася» И.Никитин «Русь». Доля стран во внешнеторговых связях России, %.

    «Зоны в России» - Широколиственных лесов. Природные зоны. Тайги. Природных зон. Россия расположена в северном полушарии, занимает большую часть материка Евразия. Полупустынь, пустынь и субтропиков. Расположение. История открытия. Флора. Субтропические леса. Зона лесотундры. Арктические пустыни. Природные. Зона тундр.

    «Зоны России» - Назови растение. Белый медведь. Кто я? Я - священное животное Древнего Египта. Суслик Хомяк Степная гадюка. Рысь Глухарь Снегирь Лось Соболь. Белка-летяга. По пустыне – сковородке, по колючкам босиком я иду с горбом-мешком. Станция «Зоологическая». Каштан. Природные зоны. Я – хозяин Арктики. Рассели животных по природным зонам.

    Всего в теме 13 презентаций



    Понравилась статья? Поделиться с друзьями: