Кинет энергия. Кинетическая энергия и ее изменение — Гипермаркет знаний

В § 88 выражение было названо кинетической энергией тела. Рассмотрим подробнее содержание этого понятия.

Допустим, что тело массы было вначале неподвижно (рис. 5.8). На него подействовала сила под действием которой тело прошло расстояние приобретя скорость При этом сила совершила работу и будет иметь место соотношение

Если взять другое тело массы и той же силой совершить такую же работу то для возникшего движения снова будет справедливо соотношение

где конечная скорость тела массы

Одна и та же работа силы сообщает телам с разной массой всегда один и тот же запас движения, и это выражается равенством

Таким образом, кинетическую энергию тела можно рассматривать как меру запаса движения данного тела. С помощью этой меры можно сравнивать между собой те запасы движения, которыми обладают различные тела или системы тел. Замечательно то, что эта мера учитывает любые движения независимо от их направления.

Поэтому она может быть использована для расчета не только упорядоченных движений тел, но и неупорядоченных, хаотических движений, происходящих в сложных системах многих тел. Используя, например, понятие кинетической энергии, можно количественно определить тот запас движения, которым обладает некоторая масса газа. Молекулы газа совершают непрерывные хаотические движения. Сумма кинетических энергий этих молекул определит энергию всей массы газа, т. е. даст количественную характеристику интенсивности теплового движения, запасенного в этом газе. Она также даст количественное представление о состоянии движения системы тел в целом.

Отметим, что получить представление о состоянии внутренних движений в системе тел с помощью вектора количества движения нельзя. Возьмем, например, два тела одинаковой массы которые движутся в противоположных направлениях с равными по модулю скоростями Количество движения каждого из тел будет равно Это дает представление о том, как движется каждое тело в отдельности. Количество же движения всей системы в целом, равное векторной сумме количеств движения отдельных тел, будет равно нулю.

Зная только этот результат (количество движения системы равно нулю), мы даже не можем сказать, движутся ли тела системы вообще. Кинетическая же энергия такой системы будет равна Зная это, во-первых, мы можем сделать вывод о том, что в данной системе тел есть движение, во-вторых, мы можем судить, насколько велик запас этого движения.

Рассмотрим случай, когда тело массы двигаясь со скоростью (рис. 5.9), встречается с другим телом (например пружинкой). При взаимодействии возникают силы, тормозящие движение тела и вызывающие деформацию или движение другого тела. Таким образом, оказывается, что движущееся тело при встрече с другими

телами может совершить некоторую работу по деформации или приведению этих тел в движение. Найдем эту работу.

По третьему закону Ньютона в любой момент времени сила действия тела на пружинку равна силе развиваемой пружинкой: Поэтому работа тела при его торможении равна работе пружинки с обратным знаком:

Подставляя получим

Это дает нам право утверждать, что кинетическая энергия любого тела определяет ту работу, которую может совершить движущееся тело во время остановки при взаимодействии с другими телами. Кинетическая энергия выступает как мера работоспособности движущегося тела. Об этом же говорит и происхождение самого слова «энергия». По-гречески слово «энергия» означает деятельность, работоспособность.

Итак, каждое движущееся тело способно произвести некоторое количество работы. Эта работа определяется массой и скоростью тела. Если тело во время взаимодействия совершает эту работу, то начинает исчезать движение тела. При совершении работы движение тела превращается в движение других тел или их частей. При этом может происходить и превращение механического движения в другие формы движения материи, например превращение механического движения в тепловое.

Окончательный вывод: кинетическая энергия является мерой запаса движения тела и одновременно определяет работу, которую тело способно совершить при взаимодействии с другими телами.

Кинетическая энергия равна половине произведения массы тела на квадрат его скорости:

Из уравнения ясно, что единицы кинетической энергии те же, что и единицы работы: (§ 89).

В предыдущем параграфе было выяснено, что когда тела, взаимодействующие друг с другом силой упругости или силой тяжести, совершают работу, то изменяется взаимное расположение тел или их частей. А когда работу совершает движущееся тело, то изменяется его скорость. Но при совершении работы изменяется энергия тел. Отсюда можно заключить, что энергия тел, взаимодействующих силой упругости или силой тяжести, зависит от взаимного расположения этих тел или их частей. Энергия же движущегося тела зависит от его скорости.

Энергию тел, которой они обладают вследствие взаимодействия друг с другом, называют потенциальной энергией. Энергию же тел, которой они обладают вследствие своего движения, называют кинетической энергией.

Следовательно, энергия, которой обладает Земля и находящееся вблизи нее тело, - это потенциальная энергия системы Земля - тело. Для краткости принято говорить, что этой энергией обладает само тело, находящееся вблизи поверхности Земли.

Энергия деформированной пружины - это тоже потенциальная энергия. Она определяется взаимным расположением витков пружины.

Кинетическая энергия - это энергия движения. Кинетической энергией может обладать тело и не взаимодействующее с другими телами.

Тела могут обладать одновременно и потенциальной, и кинетической энергией. Например, искусственный спутник Земли обладает кинетической энергией, потому что он движется, и потенциальной энергией, потому что он взаимодействует силой всемирного тяготения с Землей. Падающий груз тоже обладает и кинетической, и потенциальной энергией.

Посмотрим теперь, как можно вычислить энергию, которой обладает тело в данном состоянии, а не только ее изменение. Для этой цели нужно из различных состояний тела или системы тел выбрать одно определенное состояние, с которым будут сравниваться все остальные.

Назовем это состояние «нулевым состоянием». Тогда энергия тел в любом состоянии будет равна работе, которая совершается

при переходе из этого состояния в пулевое состояние. (Очевидно, что в нулевом состоянии энергия тела равна пулю.) Напомним, что работа, совершаемая силон тяжести и силой упругости, не зависит от траектории движения тела. Она зависит только от его начального и конечного положений. Точно так же работа, совершаемая при изменении скорости тела, зависит только от начальной и конечной скорости тела.

Какое состояние тел выбрать за нулевое, безразлично. Но в некоторых случаях выбор нулевого состояния напрашивается сам собой. Например, когда речь идет о потенциальной энергии упруго деформированной пружины, естественно считать, что недеформированная пружина находится в нулевом состоянии. Энергия недеформированной пружины равна нулю. Тогда потенциальная энергия деформированной пружины будет равна той работе, которую совершила бы эта пружина, перейдя в недеформпрованноесостояние. Когда нас интересует кинетическая энергия движущегося тела, естественно принять за нулевое то состояние тела, в котором его скорость равна нулю. Кинетическую энергию движущегося тела мы получим, если вычислим работу, которую оно совершило бы, двигаясь до полной остановки.

Иное дело, когда речь идет о потенциальной энергии тела, поднятого на некоторую высоту над Землей. Эта энергия зависит, конечно, от высоты поднятия тела. Но тут нет «естественного» выбора нулевого состояния, т. е. того положения тела, от которого нужно отсчитывать его высоту. Можно выбрать за нулевое то состояние тела, когда оно находится на полу комнаты, на уровне моря, на дне шахты и т. д. Необходимо лишь при определении энергии тела на разных высотах отсчитывать эти высоты от одного и того же уровня, высота которого принята равной нулю. Тогда значение потенциальной энергии тела на данной высоте будет равно работе, которая была бы совершена при переходе тела с этой высоты на нулевой уровень.

Выходит, что в зависимости от выбора нулевого состояния энергия одного и того же тела имеет разные значения! В этом нет никакой беды. Ведь для вычисления работы, совершаемой телом, нам нужно знать изменение энергии, т. е. разность двух значений энергии. А эта разность никак не зависит от выбора нулевого уровня. Например, для того чтобы определить, на сколько вершина одной горы выше другой, безразлично, откуда отсчитывается высота каждой вершины. Важно лишь, чтобы она отсчитывалась от одного и того же уровня (например, от уровня моря).

Изменение как кинетической, так и потенциальной энергии тел всегда равно по абсолютной величине работе, совершенной действующими на эти тела силами. Но между обоими видами энергии имеется важное различие. Изменение кинетической энергии тела при действии на него силы действительно равно совершенной этой силой работе, т. е. совпадает с ней как по абсолютной величине, так и по знаку. Это непосредственно следует из теоремы о

кинетической энергии (см. § 76). Изменение же потепцналыюй энергии тел равно работе, совершенной силами взаимодействия, только по абсолютной величине, а по знаку противоположно ей. В самом деле, когда тело, на которое действует сила тяжести, перемещается вниз, совершается положительная работа, а потенциальная энергия тела при этом уменьшается. То же относится к деформированной пружине: при сокращении растянутой пружины сила упругости совершает положительную работу, а потенциальная энергия пружины уменьшается. Напомним, что изменение величины - это разность между последующим и предшествующим значением этой величины. Поэтому, когда изменение какой-нибудь величины состоит в том, что она увеличивается, это изменение имеет положительный знак. Наоборот, если величина уменьшается, ее изменение отрицательно.

Упражнение 54

1. В каких случаях тело обладает потенциальной энергией?

2. В каких случаях тело обладает кинетической энергией?

3. Какой энергией обладает свободно падающее тело?

4. Как изменяется потенциальная энергия тела, на которое действует сила тяжести, при его движении вниз?

5. Как изменится потенциальная энергия тела, на которое действует сила упругости или сила тяжести, если, пройдя по любой траектории, тело вернется в исходную точку?

6. Как связана работа, совершаемая пружиной, с изменением ее потенциальной энергии?

7. Как изменяется потенциальная энергия пружины, когда недеформированную пружину растягивают? Сжимают?

8. Шарик подвешен к пружине и совершает колебания. Как изменяется потенциальная энергия пружины при ее движении вверх и вниз?

Открытие закона сохранения импульса, который утверждает, что векторная сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная, показало, что механическое движение тел имеет количественную меру, сохраняющуюся при любых взаимодействиях тел. Этой мерой является импульс. Однако только с помощью этого закона не получится дать полное объяснение всех закономерностей движения и взаимодействия тел.

Рассмотрим пример. Пуля массой 9 грамм, находящаяся в состоянии покоя, абсолютно безвредна. Но во время выстрела при соприкосновении с препятствием пуля деформирует его. Очевидно, что такой разрушительный эффект получается в результате того, что пуля обладает особой энергией.

Рассмотрим другой пример. Два одинаковых пластилиновых шара движутся навстречу друг другу с одинаковыми скоростями. При столкновении они останавливаются и соединяются в одно тело.

Сумма импульсов шаров до столкновения и после столкновения одинакова и равна нулю, закон сохранения импульсов выполняется. Что же происходит с пластилиновыми шарами при их столкновении, кроме изменения скорости движения? Шары деформируются и нагреваются.

Повышение температуры тел при столкновении можно наблюдать, например, при ударе молотка по свинцовому или медному стержню. Изменение температуры тела свидетельствует об изменениях скоростей хаотичного теплового движения атомов, из которого состоит тело. Следовательно, механическое движение не исчезло бесследно, оно превратилось в другую форму движения материи.

Вернёмся к вопросу, который мы ставили выше. Имеется ли в природе мера движения материи, сохраняющаяся при любых превращениях одной формы движения в другую? Опыты и наблюдения показали, что такая мера движения в природе существует. Её назвали энергией.

Энергией называется физическая величина, являющаяся количественной мерой различных форм движения материи.

Для точного определения энергии как физической величины необходимо найти её связь с другими величинами, выбрать единицу измерения и найти способы её измерения.

Механической энергией называется физическая величина, которая является количественной мерой механического движения.

В физике в качестве такой количественной меры поступательного механического движения при возникновении его из других форм движения или превращении в другие формы движения принята величина, равная половине произведения массы тела на квадрат скорости его движения. Эта физическая величина называется кинетической энергией тела и обозначается буквой Е с индексом к :

Е к = mv 2 / 2

Так как скорость является величиной, зависящей от выбора системы отсчёта, значение кинетической энергии тела зависит от выбора системы отсчёта.

Существуеттеорема о кинетической энергии. «Работа приложенной к телу равнодействующей силы равна изменению его кинетической энергии»:

А = Е к2 -Е к1

Данная теорема будет справедлива и когда тело движется под действием константной силы, и когда тело движется по действием изменяющейся силы, направление которой не совпадает с направлением перемещения. Кинетическая энергия – это энергия движения. Получается, кинетическая энергия тела массой m, движущегося со скоростью v равна работе, которую должна совершить сила, приложенная к покоящемуся телу, чтобы сообщить ему эту скорость:

А = mv 2 / 2 = Е к

Если тело будет двигаться со скоростью v, то для его полной остановки необходимо совершить работу:

А = -mv 2 / 2 = -Е к

За единицу работы в международной системе принимается работа, совершаемая силой 1 Ньютон на пути 1 метр при движении по направлению вектора силы. Эта единица измерения работы называется Джоулем.

1 Дж = 1 кг · м 2 / c 2

Так как работа равна изменению энергии, для измерения энергии используется та же единица измерения, что и для измерения работы. Единица энергии в СИ – 1Дж.

Остались вопросы? Не знаете, что такое кинетическая энергия?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

1. Камень, упав с некоторой высоты на Землю, оставляет на поверхности Земли вмятину. Во время падения он совершает работу по преодолению сопротивления воздуха, а после касания земли - работу по преодолению силы сопротивления почвы, поскольку обладает энергией. Если накачивать в закрытую пробкой банку воздух, то при некотором давлении воздуха пробка вылетит из банки, при этом воздух совершит работу по преодолению трения пробки о горло банки, благодаря тому, что воздух обладает энергией. Таким образом, тело может совершить работу, если оно обладает энергией. Энергию обозначают буквой ​\(E \) ​. Единица работы - ​\( \) ​ = 1 Дж.

При совершении работы изменяется состояние тела и изменяется его энергия. Изменение энергии равно совершенной работе: ​\(E=A \) ​.

2. Потенциальной энергией называют энергию взаимодействия тел или частей тела, зависящую от их взаимного положения.

Поскольку тела взаимодействуют с Землёй, то они обладают потенциальной энергия взаимодействия с Землёй.

Если тело массой ​\(m \) ​ падает с высоты ​\(h_1 \) ​ до высоты ​\(h_2 \) ​, то работа силы тяжести ​\(F_т \) ​ на участке ​\(h=h_1-h_2 \) ​ равна: ​\(A = F_тh = mgh = mg(h_1 — h_2) \) ​ или \(A = mgh_1 — mgh_2 \) (рис. 48).

В полученной формуле ​\(mgh_1 \) ​ характеризует начальное положение (состояние) тела, \(mgh_2 \) характеризует конечное положение (состояние) тела. Величина \(mgh_1=E_{п1} \) - потенциальная энергия тела в начальном состоянии; величина \(mgh_2=E_{п2} \) - потенциальная энергия тела в конечном состоянии.

Таким образом, работа силы тяжести равна изменению потенциальной энергии тела. Знак «–» означает, что при движении тела вниз и соответственно при совершении силой тяжести положительной работы потенциальная энергия тела уменьшается. Если тело поднимается вверх, то работа силы тяжести отрицательна, а потенциальная энергия тела увеличивается.

Если тело находится на некоторой высоте ​\(h \) ​ относительно поверхности Земли, то его потенциальная энергия в данном состоянии равна ​\(E_п=mgh \) ​. Значение потенциальной энергии зависит от того, относительно какого уровня она отсчитывается. Уровень, на котором потенциальная энергия равна нулю, называют нулевым уровнем .

В отличие от кинетической энергии потенциальной энергией обладают покоящиеся тела. Поскольку потенциальная энергия - это энергия взаимодействия, то она относится не к одному телу, а к системе взаимодействующих тел. В данном случае эту систему составляют Земля и поднятое над ней тело.

3. Потенциальной энергией обладают упруго деформированные тела. Предположим, что левый конец пружины закреплён, а к правому её концу прикреплён груз. Если пружину сжать, сместив правый её конец на ​\(x_1 \) ​, то в пружине возникнет сила упругости ​\(F_{упр1} \) ​, направленная вправо (рис. 49).

Если теперь предоставить пружину самой себе, то её правый конец переместится, удлинение пружины будет равно \(x_2 \) ​, а сила упругости \(F_{упр2} \) .

Работа силы упругости равна

\[ A=F_{ср}(x_1-x_2)=k/2(x_1+x_2)(x_1-x_2)=kx_1^2/2-kx_2^2/2 \]

​\(kx_1^2/2=E_{п1} \) ​ - потенциальная энергия пружины в начальном состоянии, \(kx_2^2/2=E_{п2} \) - потенциальная энергия пружины во конечном состоянии. Работа силы упругости равна изменению потенциальной энергии пружины.

Можно записать ​\(A=E_{п1}-E_{п2} \) ​, или \(A=-(E_{п2}-E_{п1}) \) , или \(A=-E_{п} \) .

Знак «–» показывает, что при растяжении и сжатии пружины сила упругости совершает отрицательную работу, потенциальная энергия пружины увеличивается, а при движении пружины к положению равновесия сила упругости совершает положительную работа, а потенциальная энергия уменьшается.

Если пружина деформирована и её витки смещены относительно положения равновесия на расстояние ​\(x \) ​, то потенциальная энергия пружины в данном состоянии равна ​\(E_п=kx^2/2 \) ​.

4. Движущиеся тела так же могут совершить работу. Например, движущийся поршень сжимает находящийся в цилиндре газ, движущийся снаряд пробивает мишень и т.п. Следовательно, движущиеся тела обладают энергией. Энергия, которой обладает движущееся тело, называется кинетической энергией . Кинетическая энергия ​\(E_к \) ​ зависит от массы тела и его скорости \(E_к=mv^2/2 \) . Это следует из преобразования формулы работы.

Работа ​\(A=FS \) ​. Сила ​\(F=ma \) ​. Подставив это выражение в формулу работы, получим ​\(A=maS \) ​. Так как ​\(2aS=v^2_2-v^2_1 \) ​, то ​\(A=m(v^2_2-v^2_1)/2 \) ​ или \(A=mv^2_2/2-mv^2_1/2 \) , где ​\(mv^2_1/2=E_{к1} \) ​ - кинетическая энергия тела в первом состоянии, \(mv^2_2/2=E_{к2} \) - кинетическая энергия тела во втором состоянии. Таким образом, работа силы равна изменению кинетической энергии тела: ​\(A=E_{к2}-E_{к1} \) ​, или ​\(A=E_к \) ​. Это утверждение - теорема о кинетической энергии .

Если сила совершает положительную работу, то кинетическая энергия тела увеличивается, если работа силы отрицательная, то кинетическая энергия тела уменьшается.

5. Полная механическая энергия ​\(E \) ​ тела - физическая величина, равная сумме его потенциальной ​\(E_п \) ​ и кинетической \(E_п \) энергии: \(E=E_п+E_к \) .

Пусть тело падает вертикально вниз и в точке А находится на высоте ​\(h_1 \) ​ относительно поверхности Земли и имеет скорость ​\(v_1 \) ​ (рис. 50). В точке В высота тела \(h_2 \) и скорость \(v_2 \) Соответственно в точке А тело обладает потенциальной энергией ​\(E_{п1} \) ​ и кинетической энергией \(E_{к1} \) , а в точке В - потенциальной энергией \(E_{п2} \) и кинетической энергией \(E_{к2} \) .

При перемещении тела из точки А в точку В сила тяжести совершает работу, равную А. Как было показано, ​\(A=-(E_{п2}-E_{п1}) \) ​, а также \(A=E_{к2}-E_{к1} \) . Приравняв правые части этих равенств, получаем: ​\(-(E_{п2}-E_{п1})=E_{к2}-E_{к1} \) ​, откуда \(E_{к1}+E_{п1}=E_{п2}+E_{к2} \) или ​\(E_1=E_2 \) ​.

Это равенство выражает закон сохранения механической энергии: полная механическая энергия замкнутой системы тел, между которыми действуют консервативные силы (силы тяготения или упругости) сохраняется .

В реальных системах действуют силы трения, которые не являются консервативными, поэтому в таких системах полная механическая энергия не сохраняется, она превращается во внутреннюю энергию.

Часть 1

1. Два тела находятся на одной и той же высоте над поверхностью Земли. Масса одного тела ​\(m_1 \) ​ в три раза больше массы другого тела ​\(m_2 \) ​. Относительно поверхности Земли потенциальная энергия

1) первого тела в 3 раза больше потенциальной энергии второго тела
2) второго тела в 3 раза больше потенциальной энергии первого тела
3) первого тела в 9 раз больше потенциальной энергии второго тела
4) второго тела в 9 раз больше потенциальной энергии первого тела

2. Сравните потенциальную энергию мяча на полюсе ​\(E_п \) ​ Земли и на широте Москвы ​\(E_м \) ​, если он находится на одинаковой высоте относительно поверхности Земли.

1) ​\(E_п=E_м \) ​
2) \(E_п>E_м \)
3) \(E_п 4) \(E_п\geq E_м \)

3. Тело брошено вертикально вверх. Его потенциальная энергия

1) одинакова в любые моменты движения тела
2) максимальна в момент начала движения
3) максимальна в верхней точке траектории
4) минимальна в верхней точке траектории

4. Как изменится потенциальная энергия пружины, если её удлинение уменьшить в 4 раза?

1) увеличится в 4 раза
2) увеличится в 16 раз
3) уменьшится в 4 раза
4) уменьшится в 16 раз

5. Лежащее на столе высотой 1 м яблоко массой 150 г подняли относительно стола на 10 см. Чему стала равной потенциальная энергия яблока относительно пола?

1) 0,15 Дж
2) 0,165 Дж
3) 1,5 Дж
4) 1,65 Дж

6. Скорость движущегося тела уменьшилась в 4 раза. При этом его кинетическая энергия

1) увеличилась в 16 раз
2) уменьшилась в 16 раз
3) увеличилась в 4 раза
4) уменьшилась в 4 раза

7. Два тела движутся с одинаковыми скоростями. Масса второго тела в 3 раза больше массы первого. При этом кинетическая энергия второго тела

1) больше в 9 раз
2) меньше в 9 раз
3) больше в 3 раза
4) меньше в 3 раза

8. Тело падает на пол с поверхности демонстрационного стола учителя. (Сопротивление воздуха не учитывать.) Кинетическая энергия тела

1) минимальна в момент достижения поверхности пола
2) минимальна в момент начала движения
3) одинакова в любые моменты движения тела
4) максимальна в момент начала движения

9. Книга, упавшая со стола на пол, обладала в момент касания пола кинетической энергией 2,4 Дж. Высота стола 1,2 м. Чему равна масса книги? Сопротивлением воздуха пренебречь.

1) 0,2 кг
2) 0,288 кг
3) 2,0 кг
4) 2,28 кг

10. С какой скоростью следует бросить тело массой 200 г с поверхности Земли вертикально вверх, чтобы его потенциальная энергия в наивысшей точке движения была равна 0,9 Дж? Сопротивлением воздуха пренебречь. Потенциальную энергию тела отсчитывать от поверхности земли.

1) 0,9 м/с
2) 3,0 м/с
3) 4,5 м/с
4) 9,0 м/с

11. Установите соответствие между физической величиной (левый столбец) и формулой, по которой она вычисляется (правый столбец). В ответе запишите подряд номера выбранных ответов

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A. Потенциальная энергия взаимодействия тела с Землёй
Б. Кинетическая энергия
B. Потенциальная энергия упругой деформации

ХАРАКТЕР ИЗМЕНЕНИЯ ЭНЕРГИИ
1) ​\(E=mv^2/2 \) ​
2) \(E=kx^2/2 \) ​
3) \(E=mgh \) ​

12. Мяч бросили вертикально вверх. Установите соответствие между энергией мяча (левый столбец) и характером её изменения (правый столбец) при растяжении пружины динамометра. В ответе запишите подряд номера выбранных ответов.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A. Потенциальная энергия
Б. Кинетическая энергия
B. Полная механическая энергия

ХАРАКТЕР ИЗМЕНЕНИЯ ЭНЕРГИИ
1) Уменьшается
2) Увеличивается
3) Не изменяется

Часть 2

13. Пуля массой 10 г, движущаяся со скоростью 700 м/с, пробила доску толщиной 2,5 см и при выходе из доски имела скорость 300 м/с. Определить среднюю силу сопротивления, воздействующую на пулю в доске.

Ответы

Повседневный опыт показывает, что недвижимые тела можно привести в движение, а движимые остановить. Мы с вами постоянно что-то делаем, мир вокруг суетится, светит солнце... Но откуда у человека, животных, да и у природы в целом берутся силы для выполнения этой работы? Исчезает ли бесследно? Начнет ли двигаться одно тело без изменения движения другого? Обо всем этом мы расскажем в нашей статье.

Понятие энергии

Для работы двигателей, которые придают движение автомобилям, тракторам, тепловозам, самолетам, нужно топливо, которое является источником энергии. Электродвигатели придают движение станкам при помощи электроэнергии. За счет энергии воды, падающей с высоты, оборачиваются гидротурбины, соединенные с электрическими машинами, производящими электрический ток. Человеку для того, чтобы существовать и работать, также нужна энергия. Говорят, что для того, дабы выполнять какую-нибудь работу, необходима энергия. Что же такое энергия?

  • Наблюдение 1. Поднимем над землей мяч. Пока он пребывает в состоянии спокойствия, механическая работа не выполняется. Отпустим его. Под действием силы тяжести мяч падает на землю с определенной высоты. Во время падения мяча выполняется механическая работа.
  • Наблюдение 2. Сомкнем пружину, зафиксируем ее нитью и поставим на пружину гирьку. Подожжем нить, пружина распрямится и поднимет гирьку на некую высоту. Пружина выполнила механическую работу.
  • Наблюдение 3. На тележку закрепим стержень с блоком в конце. Через блок перекинем нить, один конец которой намотан на ось тележки, а на другом висит грузик. Отпустим грузик. Под действием он будет опускаться книзу и придаст тележке движение. Грузик выполнил механическую работу.

После анализа всех вышеперечисленных наблюдений можно сделать вывод, что если тело или несколько тел во время взаимодействия выполняют механическую работу, то говорят, что они имеют механическую энергию, либо энергию.

Понятие энергии

Энергия (от греч. слова энергия - деятельность) - это физическая величина, которая характеризирует способность тел выполнять работу. Единицей энергии, а также и работы в системе СИ является один Джоуль (1 Дж). На письме энергия обозначается буквой Е . Из вышеуказанных экспериментов видно, что тело выполняет работу тогда, когда переходит из одного состояния в другое. Энергия тела при этом меняется (уменьшается), а выполненная телом механическая работа равна результату изменения ее механической энергии.

Виды механической энергии. Понятие потенциальной энергии

Различают 2 вида механической энергии: потенциальную и кинетическую. Сейчас подробнее рассмотрим потенциальную энергию.

Потенциальная энергия (ПЭ) - определяющаяся взаимным положением тел, которые взаимодействуют, либо частями того самого тела. Поскольку любое тело и земля притягивают друг друга, то есть взаимодействуют, ПЭ тела, поднятого над землей, будет зависеть от высоты поднятия h . Чем выше поднято тело, тем больше его ПЭ. Экспериментально установлено, что ПЭ зависит не только от высоты, на которую оно поднято, но и от массы тела. Если тела были подняты на одинаковую высоту, то тело, имеющее большую массу, будет иметь и большую ПЭ. Формула данной энергии выглядит следующим образом: E п = mgh, где E п - это потенциальна энергия, m - масса тела, g = 9,81 Н/кг, h - высота.

Потенциальная энергия пружины

Потенциальной энергией упруго деформированного тела называют физическую величину E п, которая при изменении скорости поступательного движения под действием уменьшается ровно на столько, на сколько растет кинетическая энергия. Пружины (как и другие упруго деформированные тела) имеют такую ПЭ, которая равна половине произведения их жесткости k на квадрат деформации: x = kx 2: 2.

Энергия кинетическая: формула и определение

Иногда значение механической работы можно рассматривать без употребления понятий силы и перемещения, акцентировав внимание на том, что работа характеризует изменение энергии тела. Все, что нам может потребоваться, - это масса некоего тела и его начальная и конечная скорости, что приведет нас к кинетической энергии. Кинетическая энергия (КЭ) - это энергия, принадлежащая телу вследствие собственного движения.

Кинетическую энергию имеет ветер, ее используют для придания движения ветряным двигателям. Движимые оказывают давление на наклонные плоскости крыльев ветряных двигателей и заставляют их оборачиваться. Вращательное движение при помощи систем передач передается механизмам, выполняющим определенную работу. Движимая вода, оборачивающая турбины электростанции, теряет часть своей КЭ, выполняя работу. Летящий высоко в небе самолет, помимо ПЭ, имеет КЭ. Если тело пребывает в состоянии покоя, то есть его скорость относительно Земли равна нулю, то и его КЭ относительно Земли равна нулю. Экспериментально установлено, что чем больше масса тела и скорость, с которой оно движется, тем больше его КЭ. Формула кинетической энергии поступательного движения в математическом выражении следующая:

Где К - кинетическая энергия, m - масса тела, v - скорость.

Изменение кинетической энергии

Поскольку скорость движения тела является величиной, зависящей от выбора системы отсчета, значение КЭ тела также зависит от ее выбора. Изменение кинетической энергии (ИКЭ) тела происходит вследствие действия на тело внешней силы F . Физическую величину А , которая равна ИКЭ ΔЕ к тела вследствие действия на него силы F, называют работой: А = ΔЕ к. Если на тело, которое движется со скоростью v 1 , действует сила F , совпадающая с направлением, то скорость движения тела вырастет за промежуток времени t к некоторому значению v 2 . При этом ИКЭ равно:

Где m - масса тела; d - пройденный путь тела; V f1 = (V 2 - V 1); V f2 = (V 2 + V 1); a = F: m . Именно по этой формуле высчитывается, на сколько изменяется энергия кинетическая. Формула также может иметь следующую интерпретацию: ΔЕ к = Flcos , где cosά является углом между векторами силы F и скорости V .

Средняя кинетическая энергия

Кинетическая энергия представляет собой энергию, определяемую скоростью движения разных точек, которые принадлежат этой системе. Однако следует помнить, что необходимо различать 2 энергии, характеризующие разные поступательное и вращательное. (СКЭ) при этом является средней разностью между совокупностью энергий всей системы и ее энергией спокойствия, то есть, по сути, ее величина - это средняя величина потенциальной энергии. Формула средней кинетической энергии следующая:

где k - это константа Больцмана; Т - температура. Именно это уравнение является основой молекулярно-кинетической теории.

Средняя кинетическая энергия молекул газа

Многочисленными опытами было установлено, что средняя кинетическая энергия молекул газа в поступательном движении при заданной температуре одна и та же, и не зависит от рода газа. Кроме того, было установлено также, что при нагревании газа на 1 о С СКЭ увеличивается на одно и то же самое значение. Сказать точнее, это значение равно: ΔЕ к = 2,07 х 10 -23 Дж/ о С. Для того чтобы вычислить, чему равна средняя кинетическая энергия молекул газа в поступательном движении, необходимо, помимо этой относительной величины, знать еще хотя бы одно абсолютное значение энергии поступательного движения. В физике достаточно точно определены эти значения для широкого спектра температур. К примеру, при температуре t = 500 о С кинетическая энергия поступательного движения молекулы Ек = 1600 х 10 -23 Дж. Зная 2 величины (ΔЕ к и Е к), мы можем как вычислить энергию поступательного движения молекул при заданной температуре, так и решить обратную задачу - определить температуру по заданным значениям энергии.

Напоследок можно сделать вывод, что средняя кинетическая энергия молекул, формулакоторой приведена выше, зависит только от абсолютной температуры (причем для любого агрегатного состояния веществ).

Закон сохранения полной механической энергии

Изучение движения тел под действием силы тяжести и сил упругости показало, что существует некая физическая величина, которую называют потенциальной энергией Е п ; она зависит от координат тела, а ее изменение приравнивается ИКЭ, которая взята с противоположным знаком: Δ Е п = -ΔЕ к. Итак, сумма изменений КЭ и ПЭ тела, которые взаимодействуют с гравитационными силами и силами упругости, равна 0 : Δ Е п + ΔЕ к = 0. Силы, которые зависят только от координат тела, называют консервативными. Силы притяжения и упругости являются консервативными силами. Сумма кинетической и потенциальной энергий тела является полной механической энергией: Е п + Е к = Е.

Этот факт, который был доказан наиболее точными экспериментами,
называют законом сохранения механической энергии . Если тела взаимодействуют силами, которые зависят от скорости относительного движения, механическая энергия в системе взаимодействующих тел не сохраняется. Примером сил такого типа, которые называются неконсервативными , являются силы трения. Если на тело действуют силы трения, то для их преодоления необходимо затратить энергию, то есть ее часть используется на выполнение работы против сил трения. Однако нарушение закона сохранения энергии здесь только мнимое, потому что он является отдельным случаем общего закона сохранения и преобразования энергии. Энергия тел никогда не исчезает и не появляется вновь: она лишь преобразуется из одного вида в другой. Этот закон природы очень важен, он выполняется повсюду. Его еще иногда называют общим законом сохранения и преобразования энергии.

Связь между внутренней энергией тела, кинетической и потенциальной энергиями

Внутренняя энергия (U) тела - это его полная энергия тела за вычетом КЭ тела как целого и его ПЭ во внешнем поле сил. Из этого можно сделать вывод, что внутренняя энергия состоит из КЭ хаотического движения молекул, ПЭ взаимодействия между ними и внутремолекулярной энергии. Внутренняя энергия - это однозначная функция состояния системы, что говорит о следующем: если система находится в данном состоянии, ее внутренняя энергия принимает присущие ему значения, независимо от того, что происходило ранее.

Релятивизм

Когда скорость тела близка к скорости света, кинетическую энергию находят по следующей формуле:

Кинетическая энергия тела, формула которой была написана выше, может также рассчитываться по такому принципу:

Примеры задач по нахождению кинетической энергии

1. Сравните кинетическую энергию шарика массой 9 г, летящего со скоростью 300 м/с, и человека массой 60 кг, бегущего со скоростью 18 км/час.

Итак, что нам дано: m 1 = 0,009 кг; V 1 = 300 м/с; m 2 = 60 кг, V 2 = 5 м/с.

Решение:

  • Энергия кинетическая (формула): Е к = mv 2: 2.
  • Имеем все данные для расчета, а поэтому найдем Е к и для человека, и для шарика.
  • Е к1 = (0,009 кг х (300 м/с) 2) : 2 = 405 Дж;
  • Е к2 = (60 кг х (5 м/с) 2) : 2= 750 Дж.
  • Е к1 < Е к2.

Ответ: кинетическая энергия шарика меньше, чем человека.

2. Тело с массой 10 кг было поднято на высоту 10 м, после чего его отпустили. Какую КЭ оно будет иметь на высоте 5 м? Сопротивлением воздуха разрешается пренебречь.

Итак, что нам дано: m = 10 кг; h = 10 м; h 1 = 5 м; g = 9,81 Н/кг. Е к1 - ?

Решение:

  • Тело определенной массы, поднятое на некую высоту, имеет потенциальную энергию: E п = mgh. Если тело падает, то оно на некоторой высоте h 1 будет иметь пот. энергию E п = mgh 1 и кин. энергию Е к1. Чтобы была правильно найдена энергия кинетическая, формула, которая была приведена выше, не поможет, а поэтому решим задачу по нижеследующему алгоритму.
  • В этом шаге используем закон сохранения энергии и запишем: Е п1 + Е к1 = Е п.
  • Тогда Е к1 = Е п - Е п1 = mgh - mgh 1 = mg(h-h 1).
  • Подставив наши значения в формулу, получим: Е к1 = 10 х 9,81(10-5) = 490,5 Дж.

Ответ: Е к1 = 490,5 Дж.

3. Маховик, имеющий массу m и радиус R, оборачивается вокруг оси, проходящей через его центр. Угловая скорость оборачивания маховика - ω . Дабы остановить маховик, к его ободу прижимают тормозную колодку, действующей на него с силой F трения . Сколько оборотов сделает маховик до полной остановки? Учесть, что масса маховика сосредоточена по ободу.

Итак, что нам дано: m; R; ω; F трения. N - ?

Решение:

  • При решении задачи будем считать обороты маховика подобными оборотам тонкого однородного обруча с радиусом R и массой m, который оборачивается с угловой скоростью ω.
  • Кинетическая энергия такого тела равна: Е к = (Jω 2) : 2, где J = mR 2 .
  • Маховик остановится при условии, что вся его КЭ истратится на работу по преодолению силы трения F трения, возникающей между тормозной колодкой и ободом: Е к = F трения *s , где s - 2 πRN = (mR 2 ω 2) : 2, откуда N = (mω 2 R) : (4πF тр).

Ответ: N = (mω 2 R) : (4πF тр).

В заключение

Энергия - это важнейшая составляющая во всех аспектах жизни, ведь без нее никакие тела не смогли бы выполнять работу, в том числе и человек. Думаем, статья вам внятно дала понять, что собой представляет энергия, а развернутое изложение всех аспектов одной из ее составляющих - кинетической энергии - поможет вам осознать многие процессы, происходящих на нашей планете. А уж о том, как найти кинетическую энергию, вы можете узнать из приведенных выше формул и примеров решения задач.



Понравилась статья? Поделиться с друзьями: