Виды источников энергии и их использование. Вспоминаем физику: работа, энергия и мощность

3.1 Энергия и её виды

3.2 Способы получения и преобразования энергии

3.3 Электрические и тепловые нагрузки и способы их регулирования

3.4 Прямое преобразование солнечной энергии в тепловую и электрическую

3.5 Ветроэнергетика

3.6 Гидроэнергетика

3.7 Биоэнергетика

3.8 Транспортирование тепловой и электрической энергии

3.8.1 Транспортирование тепловой энергии

3.8.2 Транспортирование электрической энергии

3.9 Энергетическое хозяйство промышленных предприятий

3.1 Энергия и её виды

Энергия (от греч. energeie - действие, деятельность) представляет собой общую количественную меру движения и взаимодействия всех видов материи. Это способность к совершению работы, а работа совершается тогда, когда на объект действует физическая сила (давление или гравитация). Работа - это энергия в действии.

Во всех механизмах при совершении работы энергия переходит из одного вида в другой. Но при этом нельзя получить энергии одного вида больше, чем другого, при любых ее превращениях, т. к. это противоречит закону сохранения энергии.

Различают следующие виды энергии: механическая; электрическая; тепловая; магнитная; атомная.

Электрическая энергия является одним из совершенных видов энергии. Её широкое использование обусловлено следующими факторами:

Получением в больших количествах вблизи месторождения ресурсов и водных источников;

Возможностью транспортировки на дальние расстояния с относительно небольшими потерями;

Способностью трансформации в другие виды энергии: механическую, химическую, тепловую, световую;

Отсутствием загрязнения окружающей среды;

Внедрением на основе электроэнергии принципиально новых прогрессивных технологических процессов с высокой степенью автоматизации.

Тепловая энергия широко используется на современных производствах и в быту в виде энергии пара, горячей воды, продуктов сгорания топлива.

Преобразование первичной энергии во вторичную, в частности, в электрическую, осуществляется на станциях, которые в своем названии содержат указания на то, какой вид первичной энергии преобразуется на них в электрическую:

На тепловой электрической станции (ТЭС) - тепловая;

Гидроэлектростанции (ГЭС) - механическая (энергия движения воды);

Гидроаккумулирующей станции (ГАЭС) - механическая (энергия движения предварительно наполненной в искусственном водоеме воды);

Атомной электростанции (АЭС) - атомная (энергия ядерного топлива);

Приливной электростанции (ПЭС) - приливов.

В Республике Беларусь более 95 % энергии вырабатывается на ТЭС, которые по назначению делятся на два типа:

Конденсационные тепловые электростанции (КЭС), предназначенные для выработки только электрической энергии;

Теплоэлектроцентрали (ТЭЦ), на которых осуществляется комбинированное производство электрической и тепловой энергии.

3.2 Способы получения и преобразования энергии

Тепловая электростанция включает комплект оборудования, в котором внутренняя химическая энергия топлива (твердого, жидкого или газообразного) превращается в тепловую энергию воды и пара, преобразующуюся в механическую энергию вращения, которая и вырабатывает электрическую энергию. Схема выработки электроэнергии на ТЭС представлена на рисунке 6.

Как видно из представленной схемы, поступающее со склада (С) в парогенератор (ПГ) топливо при сжигании выделяет тепловую энергию, которая, нагревая подведенную с водозабора (ВЗ) воду, преобразует ее в энергию водяного пара с температурой 550 °С. В турбине (Т) энергия водяного пара превращается в механическую энергию вращения, передающуюся на генератор (Г), который превращает ее в электрическую. В конденсаторе пара (К) отработанный пар с температурой 123 …125 °С отдает скрытую теплоту парообразования охлаждающей его воде и с помощью циркулярного насоса (Н) в виде конденсата вновь подается в котел-парогенератор.

Рисунок 6 - Схема работы ТЭС

Схема ТЭЦ отличается от ТЭС тем, что взамен конденсатора устанавливается теплообменник, где пар при значительном давлении нагревает воду, подаваемую в главные тепловые магистрали.

Котельная установка представляет собой комплекс устройств для получения водяного пара под давлением или горячей воды. Она состоит из котлоагрегата и вспомогательного оборудования, газо- и воздухопроводов, трубопроводов пара и воды с арматурой, тягодутьевых устройств и др.

Районные , или производственные котельные предназначены для централизованного теплоснабжения жилищно-коммунального хозяйства или самого предприятия. С вводом в действие ТЭЦ некоторые из них остались без дела и могут использоваться как резервные и пиковые, и тогда их называют резервно-пиковыми.

Газотурбинная установка - это двигатель, в лопаточном аппарате которого потенциальная энергия газа преобразуется в кинетическую энергию и затем частично превращается в механическую работу, которая преобразуется в электрическую энергию.

Рисунок 7 - Схема газотурбинной установки с подводом тепловой энергии при = с onst

1 - воздушный компрессор; 2 - газовая турбина; 3 - электрогенератор; 4 - топливный насос; 5 - камера сгорания

В простейшей газотурбинной установке постоянного горения (рисунок 7) воздух, сжатый до некоторого давления в компрессоре 1, поступает в камеру сгорания 5, где его температура повышается за счет сжигания топлива, подающего топливным насосом 4, при постоянном давлении. Продукты сгорания под давлением и при высокой температуре подводятся к турбине 2, в которой совершается работа расширения газа. При этом давление и температура падают. Далее продукты сгорания выбрасываются в атмосферу.

Парогазовая установка - это турбинная теплосиловая установка, в тепловом цикле которой используются два рабочих тела - водяной пар и дымовые газы, поступающие из котлоагрегата.

Поступающий из атмосферы в компрессор 1 (рисунок 8) воздух сжимается с повышением температуры и подается в камеру сгорания 5, в которую при помощи топливного насоса и впрыскивается топливо. В камере сгорания 5 происходит горение топлива, а образующиеся газы поступают в газовую турбину 2, где и совершается работа.

Рисунок 8 - Схема парогазовой установки

1 - воздушный компрессор; 2 - газовая турбина; 3 - электрогенератор; 4 – топ-ливный насос; 5 - камера сгорания; 6 - подогреватель; 7 - котел; 8 - паровая турбина; 9 - конденсатор водяного пара; 10 - питательный насос

Отработанные газы с температурой 350 °С и пониженным давлением поступают в подогреватель 6, где отдают часть теплоты для подогрева питательной воды, поступающей в котел 7 и, охладившись при этом, сбрасываются в атмосферу. Питательная вода используется в котле для получения пара, который поступает в паровую турбину 8 с температурой

540 °С. В ней пар расширяется, производя техническую работу. Отработанный в турбине пар поступает в конденсатор 9, в котором конденсируется, а образовавшийся конденсат при помощи насоса 10 направляется сначала в подогреватель 6, где воспринимает тепло отработавших в газовой турбине газов, а затем - в паровой котел 7. Расходы пара и газа подбираются таким образом, чтобы вода воспринимала максимальное количество теплоты газов. Термический коэффициент полезного действия установок - свыше 60 %.

О том, насколько эффективно внедрение паротурбинных установок, показывает внедрение в Витебском производственном объединении «Витязь» двух паротурбинных установок, которые способны вырабатывать 1500 кВт электроэнергии (по 750 кВт каждая) и ежемесячно экономить до 30 тыс. долларов на покупку энергии. Срок окупаемости проекта - чуть больше года.

Гидроэлектростанция представляет собой комплекс гидротехнических сооружений и энергетического оборудования, посредством которых энергия водных потоков или расположенных на относительно более высоких уровнях водоёмов преобразуется в электрическую энергию.

Технологический процесс получения электроэнергии на ГЭС включает:

Создание разных уровней воды в верхнем и нижнем бьефах;

Превращение энергии потока воды в энергию вращения вала гидравлической турбины;

Превращение гидрогенератором энергии вращения в энергию электрического тока.

Гидроаккумулирующая электростанция представляет собой такую гидроэлектростанцию, в которой поступление воды в водоем верхнего бьефа обеспечивается искусственно, посредством насосов, работающих за счет электроэнергии из системы. Она оборудована кроме турбин насосами (помпами) или только турбинами, которые могут работать в режиме помп (обратные турбины) для подъема воды в часы малых нагрузок в энергосистеме с нижнего бьефа в водохранилище верхнего бьефа за счет подключения к энергосистеме. При больших нагрузках ГАЭС работают как обычные ГЭС.

Тепловые схемы АЭС зависят от типа реактора; вида теплоносителя; состава оборудования и могут быть одно-, двух-, и трехконтурными.

Схема выработки электроэнергии на одноконтурной АЭС представлена па рисунке 9. Пар вырабатывается непосредственно в реакторе и поступает в паровую турбину. Отработанный пар конденсируется в конденсаторе, и конденсат подается насосом в реактор. Схема проста, экономична. Однако пар (рабочее тело) на выходе из реактора становится радиоактивным, что предъявляет повышенные требования к биологической защите и затрудняет проведение контроля и ремонта оборудования.

Рисунок 9 - Тепловая схема простейшей одноконтурной атомной электростанции

1 - атомный реактор; 2 - турбина; 3 - электрогенератор; 4- конденсатор водяных паров; 5 - питательный насос

В двухконтурных схемах производства электроэнергии на АЭС имеется два самостоятельных контура (рисунок 10) - теплоносителя и рабочего тела. Общее оборудование у них - парогенератор, в котором нагретый в реакторе теплоноситель отдает свою теплоту рабочему телу и при помощи циркуляционного насоса возвращается в реактор.

Рисунок 10 - Тепловая схема простейшей двухконтурной атомной электростанции

1 - атомный реактор; 2 - теплообменник-парогенератор; 3 - главный циркуляционный насос; 4 - турбина; 5 - электрогенератор; 6 - конденсатор водяных паров; 7 - питательный насос

Давление в первом контуре (контуре теплоносителя) значительно выше, чем во втором. Полученный в теплогенераторе пар подается в турбину, совершает работу, затем конденсируется, и конденсат питательным насосом подается в парогенератор. Хотя парогенератор усложняет установку и уменьшает её экономичность, но препятствует радиоактивности во втором контуре.

В трехконтурной схеме теплоносителями первого контура служат жидкие металлы (например, натрий). Радиоактивный натрий из реактора поступает в теплообменник промежуточного контура с натрием, которому отдает теплоту и возвращается в реактор. Давление натрия во втором контуре выше, чем в первом, что исключает утечку радиоактивного натрия. В промежуточном втором контуре натрий отдает теплоту рабочему телу (воде) третьего контура. Образовавшийся пар поступает в турбину, совершает работу, конденсируется и поступает в парогенератор.

Трехконтурная схема требует больших затрат, но обеспечивает безопасную работу реактора.

Отличие ТЭС от АЭС состоит в том, что источником теплоты на ТЭС является паровой котел, в котором сжигается органическое топливо; на АЭС -ядерный реактор, теплота в котором выделяется делением ядерного топлива, обладающего высокой теплотворной способностью (в миллионы раз выше, чем органическое топливо). Один грамм урана содержит 2,6 10 ядер, при делении которых выделяется 2000 кВт ч энергии. Для получения такого же количества энергии нужно сжечь более 2000 кг угля.

Однако при эксплуатации АЭС образуется большое количество радиоактивных веществ в топливе, теплоносителе, конструкционных материалах. Поэтому АЭС является источником радиационной опасности для обслуживающего персонала и проживающего вблизи населения, что повышает требование к надежности и безопасности её эксплуатации.

Теплоэлектрацентраль (ТЭЦ) - это тепловая электростанция, выраба-тывающая не только электрическую энергию, но и тепло, отпускаемое потре-бителям в виде пара и горячей воды для коммунально-бытового потребления. При такой комбинированной выработке тепловой и электрической энергии в тепловую сеть отдается главным образом теплота отработавшего в турбинах пара (или газа), что приводит к снижению расхода топлива на 25-30 % по сравнению с раздельной выработкой энергии на КЭС или ГРЭС (государственные районные электростанции) и теплоты в районных котельных.

В связи с развитием производственных технологий и значительным ухудшением экологической ситуации во многих регионах земного шара, человечество столкнулось с проблемой поиска новых источников энергии. С одной стороны, количество добываемой энергии должно быть достаточным для развития производства, науки и коммунально-бытовой сферы, с другой стороны, добыча энергии не должна отрицательно сказываться на окружающей среде.

Данная постановка вопроса привела к поиску так называемых альтернативных источников энергии — источников, соответствующих вышеуказанным требованиям. Усилиями мировой науки было обнаружено множество таких источников, на данный момент большинство из них уже используется более или менее широко. Предлагаем вашему вниманию их краткий обзор:

Солнечная энергия

Солнечные электростанции активно используются более чем в 80 странах, они преобразуют солнечную энергию в электрическую. Существуют разные способы такого преобразования и, соответственно, различные типы солнечных электростанций. Наиболее распространены станции, использующие фотоэлектрические преобразователи (фотоэлементы), объединенные в солнечные батареи. Большинство крупнейших фотоэлектрических установок мира находятся в США.

Энергия ветра

Ветроэнергетические установки (ветряные электростанции) широко используются в США, Китае, Индии, а также в некоторых западноевропейских странах (например в Дании, где 25% всей электроэнергии добывают именно таким способом). Ветроэнергетика является весьма перспективным источником альтернативной энергии, в настоящее время многие страны значительно расширяют использование электростанций данного типа.

Биотопливо

Главными преимуществами данного источника энергии перед другими видами топлива являются его экологичность и возобновляемость. К альтернативным источникам энергии относятся не все виды биотоплива: традиционные дрова тоже являются биотопливом, но не являются альтернативным источником энергии. Альтернативное биотопливо бывает твердым (торф, отходы деревообработки и сельского хозяйства), жидким (биодизель и биомазут, а также метанол, этанол, бутанол) и газообразное (водород, метан, биогаз).

Энергия приливов и волн

В отличие от традиционной гидроэнергетики, использующей энергию водного потока, альтернативная гидроэнергетика пока не получила широкого распространения. К главным минусам приливных электростанций относятся высокая стоимость их строительства и суточные изменения мощности, их за которых электростанции этого типа целесообразно использовать только в составе энергосистем, использующих также и другие источники энергии. Основные плюсы — высокая экологичность и низкая себестоимость получения энергии.

Тепловая энергия Земли

Для разработки этого источника энергии используются геотермальные электростанции, использующие энергию высокотемпературных грунтовых вод, а также вулканов. На данный момент более распространенной является гидротермальная энергетика, использующая энергию горячих подземных источников. Петротермальная энергетика, основанная на использовании «сухого» тепла земных недр, на данный момент развита слабо; основной проблемой считается низкая рентабельность данного способа получения энергии.

Атмосферное электричество

(Вспышки молний на поверхности Земли происходят практически одновременно в самых разных местах планеты )

Грозовая энергетика, основывающаяся на захвате и накоплении энергии молний, пока находится в стадии становления. Главными проблемами грозовой энергетики являются подвижность грозовых фронтов, а также быстрота атмосферных электрических разрядов (молний), затрудняющая накопление их энергии.

Все это разные виды энергии. Для всех происходящих в природе процессов требуется энергия. При любом процессе один вид энергии преобразуется в другой. Продукты питания – картофель, хлеб и т.д. – это хранилища энергии. Почти всю используемую на Земле энергию мы получаем от Солнца. передает Земле столько энергии, сколько произвели бы 100 миллионов мощных электростанций.

Виды энергии

Энергия существует в самых разных видах. Кроме тепловой, световой и энергии есть еще химическая энергия, кинетическая и потенциальная. Электрическая лампочка излучает тепловую и световую энергию. Энергия звука передается при помощи . Волны вызывают вибрацию барабанных перепонок, и поэтому мы слышим звуки. Химическая энергия высвобождается в ходе . Продукты питания, топливо (уголь, бензин), а также батарей­ки - это хранилища химической энергии. Пищевые продукты - это склады химической энергии, высвобождающейся внутри организма.

Движущиеся тела обладают кинетической энергией, т.е. энергией движения. Чем быстрее движется тело, тем боль­ше его кинетическая энергия. Теряя скорость, тело теряет кинетическую энергию. Ударяясь о неподвижный объект, движущееся тело передает ему часть своей кинетической энергии и при­водит его в . Часть энергии, получаемой с пищей, животные обращают в кинетическую.

Потенциальной энергией обладают тела, находящиеся в силовом поле, например в гравитационном или магнитном. Эластичные или упругие тела (обладающие способностью вытягиваться) имеют потенциальную энергию натяжения или упругости. Маятник обладает максимальной потенциальной энергией, когда находится в верхней точке. Разворачиваясь, пружина освобождает свою потенциальную энергию и заставляет колёсики в часах вращаться. Растения получают энергию от и производят питательные вещества - создают запасы химической энергии.

Превращение энергии

Закон сохранения энергии говорит, что энергия не создается из ничего и не теряется бесследно. При всех происходящих в природе процессах один вид энергии превращается в другой. Химическая энергия батареек фонарика превращается в электрическую. В лампочке электрическая энергия превращается в тепловую и световую. Мы привели пример этой «энергетической цепочки» чтобы показать вам, как один вид энергии превращается в другой.

Уголь - это спрессованные останки растении, живших много лет назад. Когда-то они получили энергию от Солнца. Уголь представляет собой запас химической энергии. Когда уголь сгорает, его химическая энергия прекращается в тепловую. Тепловая энергия нагревает , и она испаряется. Пар вращает турбину. производя тем самым кинетическую энергию - энергию движения. Генератор преобразует кинетическую энергию в электрическую. Разнообразные устройства - лампы, обогреватели, магнитофоны - потребляют электроэнергию и переводят в звук, свет и тепло.

Конечными результатами во многих процессах превращения энергии являются свет и тепло. Хотя энергия не пропадает, она уходит в пространство, и её трудно уловить и использовать.

Солнечная энергия

Энергия Солнца доходит до в виде электромагнитных волн. Только так энергия может передаваться через открытый космос. Она может использоваться для создания электроэнергии при помощи фотоэлементов или для нагревания воды в солнечных коллекторах. Панель коллектора поглощает тепловую энергию Солнца. На рисунке показана панель коллектора в разрезе. Черная панель поглощает поступающую от Солнца тепловую энергию, и вода в трубах нагревается. Так устроена крыша дома, обогреваемого Солнцем. Солнечная энергия передаётся воде, используемой для бытовых нужд и отопления. В энергохранилище попадают излишки тепла. Энергия сохраняется при помощи химических реакций.

Энергетические ресурсы

Энергия нужна нам для освещения и обогрева жилищ, для приготовления пищи, для того, чтобы могли работать заводы и двигать­ся автомобили. Эта энергия образуется при сгорании топлива. Есть и другие способы получения энергии - к примеру, ее производят гидроэлектростанции . Для приготовления пищи и обогрева жилья почти половина сжигает дрова, навоз или уголь.

Древесина, уголь, нефть и природный газ называются невозобновимыми ресурса­ми , так как их используют только один раз. Солнце, ветер, вода - это возобновимые энергоресурсы , так как сами они не исчезают при производстве энергии. В своей деятельности человек использует для добычи энергии ископаемые ресурсы – 77%, древесину – 11%, возобновляемые энергоресурсы – 5% и – 3%. Уголь, нефть и природный газ мы называем ископаемым топливом , так как мы добываем их из недр Земли. Образовались они из останков растений и животных. Почти 20% используемой нами энергии производится из угля. При сгорании топлива в попадают углекислый газ и другие газы. В этом отчас­ти заключается причина таких явлений, как кислотные дожди и парниковый эффект. Только около 5 процентов энергии добывается из возобновимых источников. Это энергия Солнца, воды и ветра. Еще один возобновимый источник энергии - газ, образующийся при гниении. Когда органические вещества гниют, выделяются газы, в частности метан. Из него в основном и состоит природный газ, который используется для обогрева домов и нагревания воды. На протяжении нескольких тысячелетий люди используют энергию ветра для пере­движения парусных судов и вращения ветряных мельниц. Ветер также может произ­водить электричество и перекачивать воду.

Единицы измерения энергии и мощности

Для измерения количества энергии употребляется специальная единица - джоуль (Дж). Тысяча джоулей составля­ют один килоджоуль (кДж). Обыкновенное яблоко (около 100 г) содержит 150 кДж химической энергии. В 100 г шоколада содержится 2335 кДж. Мощность - это количество энергии, используемой за единицу времени. Мощность измеряется в ваттах (Вт). Один ватт равен одному джоулю за секунду. Чем больше энергии за определенное время произ­водит тот или иной механизм, тем боль­ше его мощность. Лампочка мощностью в 60 Вт использует 60 Дж в секунду, а лампочка в 100 Вт использует за секунду 100 Дж.

Коэффициент полезного действия

Любой механизм потребляет энергию од­ного вида (например, электрическую) и превращает ее в энергию другого вида. Коэффициент полезного действия (КПД) механизма тем больше, чем большая часть потребляемой энергии превращается в необходимую энергию. КПД почти всех автомобилей невысок. В среднем автомобиль преобразует лишь 15% химической энергии бензина в кинетическую энергию. Вся остальная энергия превращается в тепло. КПД флуоресцентных ламп выше КПД обычных электрических лампочек, поскольку во флуоресцентных лампах больше электричества превращается в свет и меньше уходит на производство тепла.

Люди используют различные виды энергии для всего, от собственных движений до отправки космонавтов в космос.

Существует два типа энергии:

  • способность совершить (потенциальная)
  • собственно работа (кинетическая)

Поставляется в различных формах:

  • тепла (тепловая)
  • свет (лучистая)
  • движение (кинетическая)
  • электрическая
  • химическая
  • ядерная энергия
  • гравитационная

Например пища, которую человек ест содержит химическую и тело человека хранит её пока он или она израсходует как кинетическую во время работы или жизни.

Классификация видов энергии

Люди используют ресурсы разных видов: электричество в своих домах, добываемое путем сжигания угля, ядерной реакции или ГЭС на реке. Таким образом, уголь, ядерная и гидро называются источником. Когда люди заполняют топливный бак бензином источником может быть нефть или даже выращивание и переработка зерна.

Источники энергии делятся на две группы :

  • Возобновляемые
  • Невозобновляемые

Возобновляемые и невозобновляемые источники можно использовать в качестве первичных для получения пользы, такого как тепло или использовать для производства вторичных энергетических источников, таких, как электричество.

Когда люди используют электричество в своих домах, электроэнергия вероятно создается сжиганием угля или природного газа, ядерной реакции или ГЭС на реке, или из нескольких источников. Люди используют для топлива своих автомобилей сырую нефть (невозобновляемая), но могут и биотопливо (возобновляемая) как этанол, который производится из переработанной кукурузы

Возобновляемые

Есть пять основных возобновляемых источников энергии:

  • Солнечная
  • Геотермальное тепло внутри Земли
  • Энергия ветра
  • Биомасса из растений
  • Гидроэнергетика из проточной воды

Биомасса, которая включает древесину, биотопливо и отходы биомассы, является крупнейшим источником возобновляемой энергии, на которую приходится около половины всех возобновляемых и около 5% от общего объема потребления.

Невозобновляемые

Большая часть ресурсов, потребляемых в настоящее время из невозобновляемых источников:

  • Нефтепродукты
  • Углеводородный сжиженный газ
  • Природный газ
  • Уголь
  • Ядерная энергия

На невозобновляемые виды энергии приходится около 90% всех используемых ресурсов.

Изменяется ли потребление топлива с течением времени

Источники потребляемой энергии с течением времени меняются, но изменения происходят медленно. Например, уголь когда-то широко использовался в качестве топлива для отопления домов и коммерческих зданий, однако конкретное использование угля для этих целей сократилось за последние полвека.

Хотя доля возобновляемого топлива от общего потребления первичной энергии еще относительно невелика, его использование растет во всех отраслях. Кроме того, использование природного газа в электроэнергетике возросло в последние годы из-за низких цен на природный газ, в то время как использование угля в этой системе сократилось.

Энергия – всеобщая основа природных явлений, базис культуры и всей деятельности человека. В то же время под энергией (греческое – действие, деятельность ) понимается количественная оценка различных форм движения материи, которые могут превращаться одна в другую .
Согласно представлениям физической науки, энергия – это способность тела или системы тел совершать работу. Существуют различные классификации видов и форм энергии. Человек в своей повседневной жизни наиболее часто встречается со следующими видами энергии: механическая, электрическая, электромагнитная, тепловая, химическая, атомная (внутриядерная). Последние три вида относятся к внутренней форме энергии, т.е. обусловлены потенциальной энергией взаимодействия частиц, составляющих тело, или кинетической энергией их беспорядочного движения.
Если энергия – результат изменения состояния движения материальных точек или тел, то она называется кинетической ; к ней относят механическую энергию движения тел, тепловую энергию, обусловленную движением молекул.
Если энергия – результат изменения взаимного расположения частей данной системы или ее положения по отношению к другим телам, то она называется потенциальной ; к ней относят энергию масс, притягивающихся по закону всемирного тяготения, энергию положения однородных частиц, например, энергию упругого деформированного тела, химическую энергию.
Энергию в естествознании в зависимости от природы делят на следующие виды.
Механическая энергия – проявляется при взаимодействии, движении отдельных тел или частиц.
К ней относят энергию движения или вращения тела, энергию деформации при сгибании, растяжении, закручивании, сжатии упругих тел (пружин). Эта энергия наиболее широко используется в различных машинах – транспортных и технологических.
Тепловая энергия – энергия неупорядоченного (хаотического) движения и взаимодействия молекул веществ.
Тепловая энергия, получаемая чаще всего при сжигании различных видов топлива, широко применяется для отопления, проведения многочисленных технологических процессов (нагревания, плавления, сушки, выпаривания, перегонки и т.д.).
Электрическая энергия энергия движущихся по электрической цепи электронов (электрического тока).
Электрическая энергия применяется для получения механической энергии с помощью электродвигателей и осуществления механических процессов обработки материалов: дробления, измельчения, перемешивания; для проведения электрохимических реакций; получения тепловой энергии в электронагревательных устройствах и печах; для непосредственной обработки материалов (электроэрозионная обработка).
Химическая энергия это энергия, «запасенная» в атомах веществ, которая высвобождается или поглощается при химических реакциях между веществами.
Химическая энергия либо выделяется в виде тепловой при проведении экзотермических реакций (например, горении топлива), либо преобразуется в электрическую в гальванических элементах и аккумуляторах. Эти источники энергии характеризуются высоким КПД (до 98%), но низкой емкостью.
Магнитная энергия – энергия постоянных магнитов, обладающих большим запасом энергии, но «отдающих» ее весьма неохотно. Однако электрический ток создает вокруг себя протяженные, сильные магнитные поля, поэтому чаще всего говорят об электромагнитной энергии.
Электрическая и магнитная энергии тесно взаимосвязаны друг с другом, каждую из них можно рассматривать как «оборотную» сторону другой.
Электромагнитная энергия – это энергия электромагнитных волн, т.е. движущихся электрического и магнитного полей. Она включает видимый свет, инфракрасные, ультрафиолетовые, рентгеновские лучи и радиоволны.
Таким образом, электромагнитная энергия – это энергия излучения. Излучение переносит энергию в форме энергии электромагнитной волны. Когда излучение поглощается, его энергия преобразуется в другие формы, чаще всего в теплоту.
Ядерная энергия – энергия, локализованная в ядрах атомов так называемых радиоактивных веществ. Она высвобождается при делении тяжелых ядер (ядерная реакция) или синтезе легких ядер (термоядерная реакция).
Бытует и старое название данного вида энергии – атомная энергия, однако это название неточно отображает сущность явлений, приводящих к высвобождению колоссальных количеств энергии, чаще всего в виде тепловой и механической.
Гравитационная энергия – энергия, обусловленная взаимодействием (тяготением) массивных тел, она особенно ощутима в космическом пространстве. В земных условиях, это, например, энергия, «запасенная» телом, поднятым на определенную высоту над поверхностью Земли – энергия силы тяжести.
Таким образом, в зависимости от уровня проявления, можно выделить энергию макромира – гравитационную, энергию взаимодействия тел – механическую, энергию молекулярных взаимодействий – тепловую, энергию атомных взаимодействий – химическую, энергию излучения – электромагнитную, энергию, заключенную в ядрах атомов – ядерную.
Современная наука не исключает существование и других видов энергии, пока не зафиксированных, но не нарушающих единую естественнонаучную картину мира и понятие об энергии.
В Международной системе единиц СИ в качестве единицы измерения энергии принят 1 Джоуль (Дж). 1 Дж эквивалентен
1 ньютон метр (Нм). Если расчеты связаны с теплотой, биологической и многими другими видами энергии, то в качестве единицы энергии применяется внесистемная единица - калория (кал) или килокалория (ккал), 1кал=4,18 Дж. Для измерения электрической энергии пользуются такой единицей, как Ватт·час (Вт·ч, кВт·ч, МВт·ч), 1 Вт·ч=3,6 МДж. Для измерения механической энергии используют величину 1 кг·м=9,8 Дж.

Энергия, непосредственно извлекаемая в природе (энергия топлива, воды, ветра, тепловая энергия Земли, ядерная), и которая может быть преобразована в электрическую, тепловую, механическую, химическую называется первичной . В соответствии с классификацией энергоресурсов по признаку исчерпаемости можно классифицировать и первичную энергию. На рис. 2.1 представлена схема классификации первичной энергии.

Рис. 2.1. Классификация первичной энергии

При классификации первичной энергии выделяют традиционные и нетрадиционные виды энергии. К традиционным относятся такие виды энергии, которые на протяжении многих лет широко использовались человеком. К нетрадиционным видам энергии относят такие виды, которые начали использоваться сравнительно недавно.
К традиционным видам первичной энергии относят: органическое топливо (уголь, нефть и т.д.), гидроэнергию рек и ядерное топливо (уран, торий и др.).
Энергия, получаемая человеком, после преобразования первичной энергии на специальных установках - станциях, называется вторичной (электрическая энергия, энергия пара, горячей воды и т.д.).
Преимущества электрической энергии. Электрическая энергия является наиболее удобным видом энергии и по праву может считаться основой современной цивилизации. Подавляющее большинство технических средств механизации и автоматизации производственных процессов (оборудование, приборы ЭВМ), замена человеческого труда машинным в быту имеют электрическую основу.
Немногим более половины всей потребляемой энергии используется в виде тепла для технических нужд, отопления, приготовления пищи, оставшаяся часть - в виде механической, прежде всего в транспортных установках, и электрической энергии. Причем доля электрической энергии с каждым годом растет
(рис. 2.2).

Электрическая энергия – более универсальный вид энергии. Она нашла широкое применение в быту и во всех отраслях народного хозяйства. Насчитывается свыше четырехсот наименований электробытовых приборов: холодильники, стиральные машины, кондиционеры, вентиляторы, телевизоры, магнитофоны, осветительные приборы и т.д. Нельзя представить промышленность без электрической энергии. В сельском хозяйстве применение электричества непрерывно расширяется: кормление и поение животных, уход за ними, отопление и вентиляция, инкубаторы, калориферы, сушилки и т.д.
Электрификация – основа технического прогресса любой отрасли народного хозяйства. Она позволяет заменить неудобные для использования энергетические ресурсы универсальным видом энергии – электрической энергией, которую можно передавать на любое расстояние, превращать в другие виды энергии, например, в механическую или тепловую, делить ее между потребителями. Электричество – очень удобный для применения и экономичный вид энергии.

Рис. 2.2. Динамика потребления электрической энергии

Электрическая энергия обладает такими свойствами, которые делают ее незаменимой в механизации и автоматизации производства и в повседневной жизни человека:
1. Электрическая энергия универсальна, она может быть использована для самых различных целей. В частности, ее очень просто превратить в тепло. Это делается, например, в электрических источниках света (лампочках накаливания), в технологических печах, используемых в металлургии, в различных нагревательных и отопительных устройствах. Превращение электрической энергии в механическую используется в приводах электрических моторов.
2. При потреблении электрической энергии ее можно бесконечно дробить. Так, мощность электрических машин в зависимости от их назначения различна: от долей ватта в микродвигателях, применяемых во многих отраслях техники и в бытовых изделиях, до огромных величин, превышающих миллион киловатт, в генераторах электростанций.
3. В процессе производства и передачи электрической энергии, можно концентрировать ее мощность, увеличивать напряжение и передавать по проводам как на малые, так и на большие расстояния любое количество электрической энергии от электростанции, где она вырабатывается, всем ее потребителям.

Закон сохранения энергии

При любых обсуждениях вопросов, связанных с использованием энергии, необходимо отличать энергию упорядоченного движения, известную в технике под названием свободной энергии (механическая, химическая, электрическая, электромагнитная, ядерная) и энергию хаотического движения, т.е. теплоту.
Любая из форм свободной энергии может быть практически полностью использована. В то же время хаотическая энергия тепла при превращении в механическую энергию снова теряется в виде тепла. Мы не в силах полностью упорядочить случайное движение молекул, превратив его энергию в свободную. Более того, в настоящее время практически нет способа непосредственного превращения химической и ядерной энергии в электрическую и механическую, как наиболее используемые. Приходится внутреннюю энергию веществ превращать в тепловую, а затем в механическую или электрическую с большими неизбежными теплопотерями.
Таким образом, все виды энергии после выполнения ими полезной работы превращаются в теплоту с более низкой температурой, которая практически непригодна для дальнейшего использования.
Развитие естествознания на протяжении жизни человечества неопровержимо доказало, какие бы новые виды энергии ни открывались, вскоре обнаруживалось одно великое правило. Сумма всех видов энергии оставалась постоянной, что, в конечном счете, привело к утверждению: энергия никогда не создается из ничего и не уничтожается бесследно, она только переходит из одного вида в другой.
В современной науке и практике эта схема настолько полезна, что способна предсказывать появление новых видов энергии.
Если будет обнаружено изменение энергии, которая не входит в список известных в настоящее время видов энергии, если выяснится, что энергия исчезает или появляется из ничего, то будет сначала «придуман», а затем найден новый вид энергии, который учтет это отклонение от постоянства энергии, т.е. закона сохранения энергии.
Закон сохранения энергии нашел подтверждение в различных областях – от механики Ньютона до ядерной физики. Причем закон сохранения энергии – это не только плод воображения или обобщения экспериментов. Вот почему можно полностью согласиться с утверждением одного из крупнейших физиков-теоретиков Пуанкаре: «Так как мы не в силах дать общего определения энергии, принцип ее сохранения означает, что существует нечто, остающееся постоянным. Поэтому, к каким бы новым представлениям о мире не привели нас будущие эксперименты, мы заранее знаем: в них будет нечто остающееся постоянным, что можно назвать ЭНЕРГИЕЙ».
Учитывая вышеизложенное, терминологически правильно было бы говорить не «энергосбережение», так как «сберечь» энергию невозможно, а «эффективное энергоиспользование».
и т.д.................

Понравилась статья? Поделиться с друзьями: