Потенциал гельмгольца. Энергия гельмгольца

Термодинамические потенциалы. Энергия Гиббса. Энергия Гельмгольца

В изолированных системах энтропия только увеличивается и при равновесии достигает максимума. По этой причине она должна быть использована в качестве критерия возможности протекания самопроизвольных процессов в таких системах. При этом на практике большинство процессов происходит в неизолированых системах, вследствие чего для них нужно выбрать свои критерии направления самопроизвольных процессов и достижения равновесия. Такие критерии выражаются иными термодинамическими функциями, отличными от энтропии. Οʜᴎ называются характеристическими функциями.

Рассмотрим объединœенный первый и второй закон термодинамики в дифференциальной форме:

TdS ³ dU + dA" + pdV, (36).

Выразим отсюда элементарную полезную работу dA":

dA" £ -dU + TdS - pdV, (37)

Рассмотрим два случая:

1) Пусть система переходит обратимо из состояния 1 в состояние 2 при V = const, Т = const, ᴛ.ᴇ. рассмотрим обратимый изохорно-изотермический процесс. Получим (т.к. dV = 0):

dА"= -dU +TdS – pdV = - dU+d(TdS) = -d(U –TS). (38)

Под знаком дифференциала стоит некоторая функция состояния. Обозначим ее через F:

U – TS º F (39)

и назовем энергией Гельмгольца (старое название: изохорно-изотермический потенциал). Тогда получим:

dА" = – dF V,T . (40)

В случае если проинтегрировать (40), то получим:

А" = – DF V,T (41)

величина DF = F 2 – F 1 – изменение энергии Гельмгольца, а

–DF = F 1 – F 2 – убыль энергии Гельмгольца.

Энергия Гельмгольца является одним из так называемых термодинамических потенциалов .

Термодинамический потенциал - ϶ᴛᴏ такая функция состояния системы, убыль которой при обратимом переходе из состояния 1 в состояние 2 при двух постоянных параметрах (x и y) равна максимальной полезной работе обратимого процесса А"= -∆П х,у

2) Рассмотрим обратимый изобарно-изотермический процесс (р = cosnt, Т = cosnt) и проанализируем соотношение (38):

dА" = – dU +TdS – pdV = – dU +d(TS) – d(рV) = – d (U – TS + pV) = – d(H – TS).

Под знаком дифференциала стоит другая функция состояния. Обозначим ее через G:

Н – TS º G(42)

и назовем энергией Гиббса (старое название: изобарно-изотермический потенциал). Тогда получим:

dА" = – dG р, Т (43)

Проинтегрировав (43) получаем:

А" = – DG р, Т (44)

Здесь DG = G 2 – G 1 – изменение энергии Гиббса, – DG=G 1 – G 2 – убыль энергии Гиббса.

В ходе обратимого перехода системы из состояния 1 в состояние 2 при постоянных давлении и температуре совершаемая системой полезная работа равна убыли энергии Гиббса (– DG).

Стоит сказать, что для необратимых процессов, т.к. А" необр <А" обр, можно записать

А" необр < -∆F V , T и А" необр < -∆G p , T

Используя соотношение (38), можно показать, что при определœенных условиях термодинамическими потенциалами, кроме G, F, являются также внутренняя энергия U (изохорно-изоэнтропийный потенциал) и энтальпия Н (изобарно-изоэнтропийный потенциал),

Изменения термодинамических потенциалов можно рассматривать как критерии возможности протекания самопроизвольных процессов и равновесия в термодинамических системах.

В ходе самопроизвольного процесса, протекающего в соответствующих условиях, система сама совершает работу (А">0) тогда при V,T=const, для необратимого самопроизвольного процесса

-∆F>0; ∆F<0; F 2 -F 1 <0; F 2

а при p,V=const DG>0, DG<0, G 1 -G 2 <0, G 2 -G 1

при равновесии DF V ,T = 0, DG р,Т = 0.

Термодинамические потенциалы в ходе самопроизвольного процесса уменьшаются и достигают минимума при равновесии.

В случае если нарисовать как и для энтропии графики изменения термодинамического потенциала П исходя из пути процесса, то экстремальной точкой, соответствующей равновесию, будет минимум (в отличие от энтропии):


АВ – необратимый самопроизвольный процесс (здесь DП х,у < 0);

ВA – необратимый несамопроизвольный процесс (здесь DП х,у > 0);

точка В – соответствует равновесному состоянию (здесь DП х,у = 0).

2.5 Характеристические функции. Уравнения Гиббса–Гельмгольца.

Характеристическими функциями называются такие функции состояния системы, посредством которых и их частных производных бывают выражены в явной форме всœе термодинамические свойства системы.

Из дифференциальной формы объединœенного первого и второго законов термодинамики для обратимых процессов выразим величину dU:

TdS = dU + dA" + pdV, откуда

dU = TdS – dA" – pdV. (45)

В случае если полезная работа отсутствует (ᴛ.ᴇ. dA" = 0), то получим:

dU = TdS – pdV (46)

Вспомним теперь следующие соотношения:

G º H – TS = U + pV – TS (47)

F º U – TS (48)

В случае если найти значения полных дифференциалов dG, dF из соотношений (43)-(44) и учесть соотношение (46) для dU, то можно получить следующие выражения для dG, dF:

dG = dU + pdV + Vdp - TdS -SdT =Vdp – SdT (49)

dF = dU - TdS - SdT = – pdV – SdT (50)

На основании соотношений (49)–(50) можно прийти к выводам, что

ТЕРМОДИНАМИЧЕСКИЕ АСПЕКТЫ ПОВЕРХНОСТИ

Химическая термодинамика, являясь разделом физической химии, изучает законы взаимных превращений различных видов энергии, влияние различных факторов на состояние равновесия химических реакций и процессов, фазовые переходы, направление и условия протекания самопроизвольных и вынужденных процессов. Термодинамический подход применим только к термодинамическим системам, состоящим из очень большого числа частиц.

Химическая термодинамика базируется на четырех законах (постулатах) и использует понятия о типах термодинамических систем (гомогенная, гетерогенная, закрытая, открытая, изолированная), термодинамических параметрах состояния (давление, температура, химический потенциал), термодинамических функциях (внутренняя энергия, энтальпия, энтропия, энергия Гельмгольца, энергия Гиббса) и термодинамических потенциалах.

Термодинамическая система – это любое тело или совокупность тел способных обмениваться между собой и с другими телами энергией и веществом, т.е. взаимодействовать между собой. Термодинамические системы по характеру взаимодействия с окружением делят на открытые, закрытые и изолированные. В открытых системах имеет место обмен с окружающей средой массой и энергией. У закрытых систем наблюдается обмен с окружающей средой лишь энергией. Для изолированных систем исключен обмен с окружающей средой как массой, так и энергией. Системы делят также на гомогенные и гетерогенные. Совокупность термодинамических параметров характеризует состояние (свойство) термодинамической системы, которое не зависит от способа достижения данного состояния. Например, температура, давление и объем являются параметрами, характеризующими состояние (свойства) газа. Термодинамические параметры являются функциями состояния системы, поскольку их изменение в любом процессе перехода между двумя состояниями определяется лишь начальным и конечным состояниями системы и не зависит от пути перехода. Функция называется характеристической, если с помощью этой функции или её частных производных можно определить все термодинамические свойства системы в данном состоянии. Так внутренняя энергия является характеристической функцией системы при постоянстве таких параметров как энтропия и объем, энтальпия – при постоянстве давления и энтропии, энергия Гельмгольца – при постоянстве объема и температуры, а энергия Гиббса – при постоянстве давления и температуры. Указанные постоянные параметры состояния называют естественными переменными.

Под термодинамическим процессом понимают всякое изменение состояния термодинамической системы, сопровождающееся изменением хотя бы одного из параметров состояния. Процессы классифицируют, используя разные признаки. В зависимости от того, какой параметр остается постоянным, различают изотермический (температура), изобарный (давление) и изохорный (объем) процессы. Если тепло выделяется, то это экзотермический, а поглощается – эндотермический процессы. Процесс может быть самопроизвольным и вынужденным, т.е. происходить при поступлении энергии от внешних тел.


Фазой в термодинамике называют однородную по химическому составу и физическому состоянию систему или часть системы, ограниченную поверхностью раздела. Фазы могут быть гомогенными или гетерогенными. Гомогенные системы состоят из одной фазы, в отличие от гетерогенных, в состав которых входят, по крайней мере, две фазы, разграниченные поверхностями раздела.

Термодинамические параметры, не зависящие от массы вещества, являются интенсивными. Примером интенсивных параметров являются температура, вязкость, химический потенциал и т.д. Параметры, зависящие от количества вещества в системе, называются экстенсивными. Примерами экстенсивных параметров являются внутренняя работа, объем, масса, концентрация. Экстенсивный параметр, отнесенный к объему вещества, становится интенсивным.

Важным интенсивным термодинамическим параметром веществ, входящих в состав многокомпонентных систем, является химический потенциал μ, характеризующий состояние химического или фазового равновесия в макроскопической системе.

Если рассмотреть гетерогенную систему, которая состоит из n различных веществ с массами m 1 , m 2 ,……m n , то изменение внутренней энергии dU некоторой гомогенной части должно быть пропорционально изменениям масс вещества dm 1 , dm 2 ,…dm n

где S - энтропия, V – объем системы, а p – давление в системе.

Коэффициенты в уравнении при dm представляют собой химические потенциалы μ отдельных i -тых компонентов системы. Согласно определению, химический потенциал i-го вещества равен изменению энергии Гиббса при добавлении 1 моль этого вещества в условиях постоянного давления и температуры к настолько большому количеству смеси, чтобы состав её при этом не изменился.

Уравнение 1 можно записать в более общем виде

где N k – число молей в системе.

Согласно первому закону термодинамики, выражающему закон сохранения энергии для термодинамической системы, внутренняя энергия представляет собой сумму энергий всех видов движения (кинетическая энергия) и энергии взаимодействия (потенциальная энергия) всех частиц, составляющих систему, за исключением указанных энергий, относящихся ко всей системе в целом. В макроскопических системах изменение ΔU происходит в виде теплоты Q и работы A, что в интегральной форме для конечных изменений выражается уравнением:

(3)

Если понимать работу как величину, включающую изменение объема при постоянном давлении и работу по выполнению химического процесса (A ch), то первое начало термодинамики можно записать в виде:

Второй закон термодинамики определяет направление, в котором в данных условиях может самопроизвольно совершаться процесс в системе, и лежит в основе учения о химических и фазовых равновесиях. Для обратимого процесса

A ch характеризует часть внутренней энергии, которую можно превратить в работу при постоянном давлении и температуре. Эта величина называется свободной энергией Гиббса G или изобарно-изотермическим потенциалом.

В общем случае:

где H – энтальпия (скрытая теплота).

Знак энергии Гиббса определяет самопроизвольность прохождения химической реакции, которая зависит от dH и dS.

Для процессов в тепловом равновесии с окружающей средой справедлива формула:

. (8)

В общем случае:

Если ΔG < 0, то процесс является самопроизвольным.

Для процессов при постоянном объеме используется энергия Гельмгольца F (изохорно-изотермический потенциал).

(10)

Если процессы идут в конденсированной фазе или при постоянном объеме, то G и F совпадают.

Увеличение энтропии при эндотермическом растворении веществ ведет к уменьшению энергии Гиббса и, соответственно, свидетельствует о самопроизвольности подобных процессов.

Характер изменения свободной энергии Гиббса зависит от полноты и степени превращения вещества и определяет обратимость и необратимость процесса. Если производная потенциала Гиббса по степени приращения вещества после ее уменьшения обращается в ноль (ΔG = 0), а затем начинает расти, то любые колебания состава приводят к увеличению энергии, что должно возвращать систему в исходное состояние. Это случай для обратимых превращений. Если процессы необратимы, то:

Энергия в данном процессе все время убывает и не имеет минимума.

Параметры, применяемые для описания свободной энергии Гиббса и Гельмгольца, делятся на экстенсивные и интенсивные. Экстенсивные определяются количеством вещества в системе (объемом или массой) и эти параметры могут быть непосредственно изменены. Интенсивные параметры – температура и давление – могут быть определены лишь опосредованно через некоторую величину. Для химической системы с измененным компонентом реакции, экстенсивным параметром является количество вещества, а интенсивным – химический потенциал. Для реакций при p и T = const:

n i – число молей i -ой компоненты.

Для реакций при V и T = const:

Первая производная энергии Гиббса системы по числу молей n i компонента при постоянстве числа молей всех остальных компонентов, а также температуры и давления представляет собой химический потенциал i-го компонента:

(12)

Таким образом, химический потенциал есть парциальная молярная энергия Гиббса.

В общем виде химический потенциал компонента равен приросту любой функции состояния (изменению любого термодинамического потенциала) при постоянстве её естественных переменных и состава раствора, если к бесконечно большому количеству раствора определенного состава добавить 1 моль этого компонента, т.е. в строго равновесных условиях.

При j≠i (13)

В химических процессах обычно происходит изменение количеств нескольких веществ, при этом суммарную свободную энергию можно записать в виде:

Таким образом, важнейшей термодинамической закономерностью является концентрационная зависимость химического потенциала. Другим важным свойством химического потенциала является то, что вещество может самопроизвольно переходить из фазы, в которой его химический потенциал больше в фазу, в которой он меньше. В состоянии равновесия dG = 0, тогда для любого из компонентов химический потенциал будет одинаков во всех фазах системы, где этот компонент присутствует.

Характеристические функции

Все реальные системы неизолированные; подавляющее большинство из них, являются открытыми. Для подобных систем только с помощью энтропии нельзя охарактеризовать направление процесса. В связи с этим вводятся еще две термодинамические функции состояния - энергия Гиббса и энергия Гельмгольца, с их помощью появляется возможность определить условия самопроизвольных и равновесных процессов в изолированных системах.

Энергия Гиббса и энергия Гельмгольца

Для определения направления процесса в неизолированных системах необходимо рассматривать не только систему, но и среду, окружающую эту систему.

Энтропию как термодинамическую функцию состояния можно связать с теплотой обратимого процесса. Если бесконечно малое кол-во энергии δq предается системе обратимым способом в виде теплоты при температуре Т , в этом случае энтропия изменяется как:

δS≥ δq обр /Т (*) (где знак больше-самопроизвольный процесс, равно - равновесное состояние системы)

Используя это состношение, рассмотрим случай, когда система отдает теплоту окружающей среде (система в этом случае закрытая) при постоянном объеме. Тогда на основании равенства δq=dU (в изохорно-изотермических процессах теплота процесса равна изменению внутренней энергии) δq можно отождествлять с dU Замена δq на dU в уравнении (*) приводит к следующим результатам:

В случае потери теплоты при постоянном давлении с учетом равенства δq=dН (в изобарно-изотермических процессах теплота процесса равна изменению энтальпии) из уравнения (*) получим

(4.2)

Условия (4.1) и (4.2) позволяют ввести две новые термодинамические функции состояния - энергию Гельмгольца А*(ранее обозначали как F) и энергию Гиббса G, которые определяются следующим образом:

|Уравнения (4.3) и (4.4) связывают между собой пять характеристических функций состояния и дают возможность рассматривать особенности равновесных (если d А = 0 или dG =0 ) и самопроизвольных (когда d А < 0 или dG < 0 ) процессов. |Поясним смысл уравнений (4.3) и (4.4) и правых частей этих равнений при помощи рисунка.

Неизолированная система, обладающая свойствами идеального газа, имеет начальную температуру Т, а температура окружающей среды Тс, ниже начальной температуры системы, т.е. Тс<Т. Система остывает и отдает окр. среде часть своей внутренней энергии (энтальпии) в виде d А или dG , в системе остается запас энергии, соответствующей правой части уравнения 4.3 или 4.4 Если бы температура среды была равна абсолютному нолю и оставалась таковой в течение всего процесса передачи теплоты, то система тоже должна была бы остыть до темепратуры среды,т.е. до абсолютного ноля. При этом система всю свою внутреннюю энергию сообщила бы среде. Однако температура окр. среды (Тс) больше 0.

В соответствии с одной из формулировок второго начала термодинамики (невозможен самопроизвольный переход теплоты от холодного тела к горячему) система может остыть лишь до некоторой конечной температуры Т к. В этих условиях система отдает среде только часть своей внутренней энергии, которую называют свободной энергией . В изобарно-изотермическом процессе она выступает в форме энергии Гиббса dG , а в изохорно-изотермическом - энергии Гельмгольца d А.

Энергия Гиббса (энергия Гельмгольца) - это часть внутренней энергии, которую система может отдать окружающей среде. Именно поэтому ее называют "свободной". Остальная часть внутренней энергии системы, равная теплоте ее нагрева от абсолютного нуля до Т к, остается в системе и не может быть использована вне системы, в данном случае для передачи теплоты из системы в окружающую среду. Оставшаяся часть энергии как бы "заперта" в системе, поэтому ее называют связанной энергией . Связанная энергия контролируется энтропией системы и равна произведению абсолютной температуры на изменение энтропии от абсолютного нуля до абсолютной температуры системы, т. е. TdS или TΔS, что соответствует вычитаемому правой части уравнений (4.3) и (4.4).

Итак, энергия Гиббса и энергия Гельмгольца определяют ту часть теплоты (энергии), которую система может отдать; эта часть равна суммарному запасу энергии системы за вычетом той энергии, которая остается в системе

В соответствии с уравнениями (4.3) и (4.4) энергия Гиббса и энергия Гельмгольца определяются значениями энтальпии и внутренней энергией (ΔН и ΔU), с одной стороны, и энтропии ΔS- с другой, т. е. энтальпийным и энтропийным факторами . Величина ΔН(ΔU) как энтальпийный фактор возрастает по мере агрегации частиц, т. е. отражает стремление частиц объединяться. К процессам, увеличивающим ΔН , относятся сжатие газа, конденсация пара, затвердевание жидкости, ассоциация молекул, синтез молекул из атомов и т. д. Величина ΔS как энтропийный фактор характеризует противоположную тенденцию - стремление частиц к дезинтеграции, переход от порядка к беспорядку, от меньшего беспорядка к большему. К числу процессов, увеличивающих энтропию, можно отнести расширение газа, испарение жидкости, плавление, диссоциацию молекул и др., а же смешение газов, растворение, диффузию и т. д.

Критерии равновесных и самопроизвольных процессов

В соответствии со вторым началом термодинамики критерием самопроизвольного процесса является рост энтропии. Если энтропийный фактор, определяющий возможность самопроизвольных процессов, соотносится с энтальпийным следующим образом: TdS≥dU (а для изобарного процесса TdS≥dН), - то из уравнений (4.3) и (4.4) следует

(4.5 и 4.6)

Равенство означает равновесный процесс, знак "меньше" характеризует самопроизвольный процесс. Соотношения (4.5) и (4.6) являются основополагающими для расчетов и определения условий равновесных и самопроизвольных процессов для неизолированных систем.

В практических расчетах значения энергии Гиббса применяют чаще, чем энергии Гельмгольца. На практике химические и физико-химические процессы чаще проводят при постоянном давлении, нежели при постоянном объеме, т. е. в изобарных условиях, которые характеризуются энергией Гиббса.

Рассмотрим протекание самопроизвольных процессов и условий равновесия с помощью рисунка.

Как и в случае изменения энтропии, рассмотрим самопроизвольный I, равновесный II и несамопроизвольный III процессы. Сопоставим изменения энтропии и энергии Гиббса. Изменение энергии Гиббса (энергии Гельмгольца) является в принципе зеркальным отображением изменения энтропии. Энергия Гиббса (Гельмгольца соответственно) уменьшается в самопроизвольном процессе, в отличие от энтропии, которая увеличивается.

В условиях равновесия энергия Гиббса и энергия Гельмгольца достигают минимума, в то время как энтропия - максимума .

Еще раз подчеркнем, что энтропия является критерием направленности процесса в изолированных системах, а энергия Гиббса и энергия Гельмгольца - в неизолированных системах.

Для осуществления несамопроизвольных процессов, когда ΔG>0 или ΔА>0, необходимо затратить энергию, находящуюся вне системы в окружающей ее среде.

В обобщенном виде изменения энтропии, энергии Гиббса и Гельмгольца в различных процессах для изолированных и неизолированных систем приведены в таблице.

Итак, для определения направления процесса, а также для определения возможности самопроизвольного процесса необходимо знать изменение энергии Гиббса (энергии Гельмгольца), т. е. выполнение условий (4.5) и (4.6).

Определить изменения энергии Гиббса можно двумя способами. Первый из них основан на использовании уравнения 4.4, а второй - на рассмотрении энергии Гиббса как функции состояния. Рассмотрим два этих способа на примерах. Обратимся сначала к расчету энергии Гиббса и энергии Гельмгольца с помощью уравнений 4.3 и 4.4

Рассмотрим второй способ расчета изменении энергии Гиббса как функции состояния системы. По аналогии с определением энтальпии реакции

изменение энергии Гиббса в результате химической реакции равно разности энергий Гиббса продуктов реакции и исходных веществ, участвующих в этой реакции, т.е(4.7)

Характеристические функции, термодинамические уравнения состояния

Между пятью термодинамическими функциями состояния: внутренней энергией ΔU, энтальпией ΔH, энтропией ΔS, энергией Гиббса ΔG и энергией Гельмгольца ΔA - существует связь. Связь между термодинамическими функциями и основными параметрами системы р, V и Т представлена на рисунке.

Согласно рисунку каждая из четырех прямых характеризует связь между тремя величинами, две из которых являются термодинамическими функциями состояния. При постоянстве двух других третья величина определяет условия самопроизвольного и равновесного процесса. Эти процессы можно представить следующим образом

Наибольшее практическое значение имеют изобарно-изотермические процессы, связь между параметрами которых характеризуется прямой 3.

Все рассмотренные пять термодинамических функций являются характеристическими. В термодинамике принято называть функцию характеристической, если ее значения и значения ее производных разного порядка достаточны для выражения в явной форме всех термодинамических свойств системы. Характеристическими являются функции ΔU, ΔH, ΔG, а также ΔS и ΔA.

Энергия Гельмгольца (изохорно-изотермический потенциал) является характеристической функцией, если независимыми переменными выбраны объем и температура . Полный дифференциал энергии Гельмгольца для простых систем записывается в виде:

а в случае обратимых процессов как

Полагая V = const

, . (4.58)

Функция А = f (T ) при V = const является убывающей, а кривая зависимости энергии Гельмгольца от температуры при постоянном объеме обращена выпуклостью вверх (рис. 4.3). Мерой убыли энергии Гельмгольца при повышении температуры вещества является энтропия .

Полагая Т = const , из уравнения (4.57) получаем

, . (4.59)

Функция А = f (V ) при T = const также является убывающей, но кривая зависимости энергии Гельмгольца от объема при постоянной температуре обращена выпуклостью вниз (рис. 4.3).

Рис.4.3. Зависимость энергии Гельмгольца от температуры и объема.

При протекании обратимых процессов в сложных системах, способных выполнять кроме работы расширения и другие виды работы (полезную работу), справедливо:

Если процесс изотермический (Т = const ), то

,

Итак, в обратимом изотермическом процессе убыль энергии Гельмгольца равна максимальной (полной) работе, производимой системой . В этом заключается основной смысл введения новой функции А : через изменение функции состояния в изотермических условиях можно определить максимальную работу в обратимом процессе.

Если обратимый процесс протекает в изохорно-изотермических условиях , то

В обратимом изохорно-изотермическом процессе убыль энергии Гельмгольца равна максимальной полезной работе .

Рассмотрим систему и окружающую среду, которые находятся в тепловом равновесии: Т сист. = Т ср. . Пусть в системе протекает процесс, в результате которого в окружающую среду переходит количество теплоты δQ cр. . Тогда общее изменение энтропии dS общ (ее называют изменением энтропии вселенной ) равно:

Поскольку теплота уходит из системы, то δQ cр. = –δQ сист. , поэтому

Но dS общ. положительно для любого самопроизвольного (необратимого) процесса и равно нулю при равновесии. Следовательно,

. (4.63)

Значение неравенства (4.63) состоит в том, что оно выражает критерий самопроизвольного изменения только через свойства системы . Если система теряет теплоту при постоянном объеме, то

δQ V = dU ,

поэтому соотношение (4.63) принимает вид:

или . (4.64)

В последнем соотношении нижний индекс опущен, поскольку все величины относятся к системе. Следует понимать, что dS – это изменение энтропии системы, а ‑dU /T – изменение энтропии среды: суммарная энтропия стремится к максимуму.



Поскольку в конечном итоге рассматривается изохорно-изотерми-ческий процесс, то

Следовательно, при протекании процессов в изохорно-изотермических условиях должно выполняться неравенство

где знак равенства относится к обратимым процессам, а знак неравенства – к необратимым.

Если в обратимом процессе энтропия системы увеличивается, то максимальная работа больше, чем –ΔU , так как T ΔS положительно. Система не изолирована и поэтому в нее может поступать теплота, служащая источником энергии для производства работы. Если же ΔS отрицательно, то теплота должна выделяться из системы, чтобы привести к общему увеличению энтропии (энтропии вселенной). Поэтому не все изменение внутренней энергии может перейти в работу и W max < (–ΔU ).

Напомним, что второй закон термодинамики определяет критерии самопроиз­вольного протекания процессов в изолированных системах. Однако, подобные условия (отсутствие обмена энергией и веществом с окружающей средой) реализуются сравнительно редко. Поэтому представляется важным сформулировать подобного рода критерии для закрытых систем, где возможен обмен энергией с окружающей средой. Для этого нам потребуется определить две новые функции состояния - энергию Гельмгольца и энергию Гиббса.

Работа процесса в общем случае, как это уже говорилось, зависит от пути процесса. Работа неравновесного процесса меньше, чем работа равновесного процесса, протекающего между теми же начальным и конечным состояниями системы. В самом деле, исходя из уравнения первого закона термодинамики (I, 9) и уравнения (II, 19), получаем в общем случае:

δW = dQ – dU £ TdS – dU (III, 1)

Величина правой части этого уравнения не зависит от того, равновесен или неравновесен процесс. В случае равновесного процесса:

dW = dW равн. = TdS – dU (III, 2)

Для неравновесного процесса:

dW < TdS – dU (III, 3)

Сравнивая уравнения (III, 2) и (III, 3), получаем:

dW равн. > dW

Таким образом, работа равновесного процесса максимальна.

Максимальная работа не зависит от пути, а определяется лишь начальным и конечным состояниями системы. Так, при S = const (равновесный адиабатный процесс)

dW = –dU и W макс. = – (U 2 – U 1) (III, 4)

т. е. величина максимальной работы определяется изменением внутренней энергии системы.

Интегрируя при постоянной температуре Т уравнение (III, 2), получаем:

W макс. = T (S 2 – S 1) – (U 2 – U 1) (III, 5)

W макс. = – (U 2 – TS 2) +(U 1 – TS 1 ) (III, 6)

Выражения, стоящие в скобках, являются функциями состояния системы. Введя в уравнение (III, 6) обозначение

F º U – TS (III, 7)

получаем (при T = const )

W макс. = – F 2 + F 1 = – (F 2 – F 1) = –DF (III, 8)

где F - функция состояния, называемая энергией Гельмгольца (в настоящее время для обозначения энергии Гельмгольца по решению ИЮПАК используется символ А , однако в настоящем курсе принято обозначение F , как и в большинстве рекомендуемых нами учебников). Таким образом, максимальная работа при изохорно-изотермических равновесных процессах равна убыли энергии Гельмгольца системы.

Переписав уравнение (III, 3) в виде

U = F + TS

можно рассматривать внутреннюю энергию, как состоящую из двух частей - свободной энергии F и связанной энергии TS. Лишь часть внутренней энергии - свободная энергия, которую система отдает вовне при T = const , может превратиться в работу (условием для такого превращения является равновесность процесса; в неравновесном процессе свободная энергия частично или полностью переходит в теплоту). Другая часть внутренней энергии - связанная энергия - при изменении системы, если Т = const , не дает работы, а переходит только в теплоту.

Энтропия есть, таким образом, фактор ёмкости связанной энергии.

Для процессов, протекающих с изменением температуры (T ¹ const), деление внутренней энергии на свободную и связанную не может быть проведено и, следовательно, сами термины не имеют общего значения. Поэтому будем пользоваться для функции F названием энергия Гельмгольца.

Полный дифференциал функции F можно получить, дифференцируя уравнение (III,7):

dF º dU TdS SdT (III, 9)

Сопоставив это уравнение с уравнениями (III, 2) и (III, 3), получим в общем виде:

dF £ –SdT – dW (III, 10)

Откуда при Т = const

(dF) T £ –dW (III, 11)

F 2 – F l = DF < – W; то есть – (F 2 – F 1 ) = –DF > W (III, 12)

Выражение (III, 12) отражает уже известное нам положение, что работа неравновесного процесса меньше работы равновесного процесса.

Если при равновесном процессе совершается только работа расширения ( dW = PdV), то из уравнения (III, 10) получаем:

dF = –SdT – PdV (III, 13)

Это выражение является полным дифференциалом функции F при переменных V и Т.

Полагая T = const и V = const , а также при условии отсутствия всех видов работы (dW = 0 ), получаем из уравнения (III, 10):

F ) V , T £ 0 (III, 14)

т. е., энергия Гельмгольца системы, находящейся при постоянных V и Т , не изменяется при равновесных процессах, при неравновесных процессах ее значение убывает.

Так как система, в которой протекают (и могут протекать) только равновесные процессы, бесконечно близка к равновесию, то сформулированные свойства энергии Гельмгольца позволяют судить о том, находится данная система в состоянии равновесия или нет. В последнем случае направление неравновесного процесса определяется убылью энергии Гельмгольца при постоянных температуре и объеме системы.

Условия, которым должны удовлетворять процессы, для того, чтобы по изменениям величины F можно было судить о направлении этих процессов, иные, чем для энтропии. Для энтропии это были условия постоянства внутренней энергии и объема (изолированная система), для энергии Гельмгольца это условие постоянства объёма и температуры - легко измеримых параметров системы. Энергия Гельмгольца, являясь производным понятием по отношению к энтропии, представляет собой практически более удобный критерий направления процессов, чем энтропия.

Изложенные соображения могут быть выражены следующим положением: энергия Гельмгольца системы, находящейся при постоянных объёме и температуре, уменьшается при неравновесных (самопроизвольных) процессах. Когда она достигает минимального значения, совместимого с данными V и Т, система приходит в равновесное состояние.



Понравилась статья? Поделиться с друзьями: