Плетеный забор своими руками. Основы техники плетения из лозы и секреты древнего увлечения для новичков

Наряду с контроллером и сенсорами, актуаторы являются важным составляющим всех без исключения роботов. Они вращают колеса робота, позволяя ему перемещаться в пространстве, и приводят в действие мощные манипуляторы, которыми он хватает предметы.

В этом уроке мы будем работать с одним из таких актуаторов, который называется сервоприводом (или сервомашинкой). В отличие от обычного электромотора, сервопривод представляет собой сложное составное устройство, состоящее из двигателя постоянного тока, шестеренного редуктора, потенциометра и электронной схемы. Всё это позволяет сервоприводу поворачивать вал строго на заданный угол, и удерживать его. С помощью таких приводов можно, например, сделать вот такой несложный манипулятор:

1. Подключение к Ардуино

Итак, как уже говорилось выше, сервопривод славится тем, что может поворачиваться на заданный угол. Как же мы будем указывать ему этот угол? Предлагаю использовать для этой цели переменный резистор, он же — потенциометр. Будем вращать ручку потенциометра, а контроллер будет командовать сервоприводу поворачиваться на соответствующий угол.

У потенциометра есть всего три вывода. Крайние подключим к +5В и земле, а центральный к аналоговому входу A0.

У сервопривода SG90 также имеется три контакта. Обычно они окрашиваются следующим образом:

  • коричневый — земля;
  • красный — питание +5В;
  • оранжевый (или желтый) — сигнальный.

Сигнальный провод подключим в цифровому выходу №8. В итоге, получим такую схему:

Подключать оба устройства к Ардуино Уно удобнее через макетную плату:

2. Программа

Теперь напишем несложную программу, которая свяжет все элементы нашего аппарата строгой логикой. Все что нам требуется от контроллера — это:

  • считывать показания с потенциометра в диапазоне от 0 до 1023;
  • преобразовывать полученное число в угол от 0 до 180 градусов;
  • передавать полученный угол на сервопривод.

Для написания программы используем наш . Задействуем блок сервопривода, блок чтения из аналогового порта и функцию отображения одного диапазона значений в другой.

Нажав в конструкторе кнопку «Arduino», откроем страницу с исходным кодом программы для среды Arduino IDE:

#include Servo servos; void setup(){ } void loop(){ servos.attach(8); servos.write((map(analogRead(A0), 0, 1024, 0, 180))); delay(50); }

Как видно из программы, для управления сервоприводом мы использовали библиотеку Servo . В этой библиотеке есть несколько полезных нам функций:

  • attach(номер_вывода) — инициализация сервопривода;
  • write(угол) — поворот сервопривода на заданный угол;
  • read() — получение текущего угла сервопривода.

Для отображения множества чисел 0 — 1023 в множество 0-180, конструктор применил функцию map . Ту же самую операцию, можно было осуществить с помощью выражения:

int angle = (value / 1023.0) * 180;

Загружаем программу на Ардуино Уно, и смотрим что получилось!

Теперь, вы знаете что такое сервопривод, и можете легко им управлять. Вперед! К созданию роботов-манипуляторов и шагающих роботов-пауков!

В конструкциях современного оборудования, создаваемого на базе высоких технологий, постоянно развиваются и совершенствуются различные автоматические процессы. Среди них широкое распространение получил сервопривод, устанавливаемый с целью совершения отдельными элементами и деталями постоянных динамических движений. Эти устройства обеспечивают постоянный контроль над углами поворота вала, устанавливают нужную скорость в приборах электромеханического типа.

Составной частью этих систем являются серводвигатели, которые дают возможность управлять скоростями в нужном диапазоне в установленный промежуток времени. Таким образом, все процессы и движения могут периодически повторяться, а частота этих повторов закладывается в системе управления.

Устройство сервопривода

Основные детали, из которых состоит типовой серводвигатель - ротор и статор. Для коммутации применяются специальные комплектующие в виде штекеров и клеммных коробок. Управление, контроль и коррекция процессов осуществляется с помощью отдельного управляющего узла. Для включения и выключения сервопривода используется отдельная система. Все детали, помещаются в общем корпусе.

Практически во всех сервоприводах имеется датчик, работающий и отслеживающий определенные параметры, такие как положение, усилие или скорость вращения. С помощью управляющего блока поддерживается автоматический режим необходимых параметров при работе устройства. Выбор того или иного параметра происходит в зависимости от сигналов, поступающих от датчика в установленные промежутки времени.

Разница между сервоприводом и обычным электродвигателем заключается в возможности установки вала в точно заданное положение, измеряемое в градусах. Установленное положение, так же, как и другие параметры, поддерживаются блоком управления.

Их принцип работы заключается в преобразовании электрической энергии в механическую, с помощью электродвигателя. В качестве привода используется редуктор, позволяющий снизить скорость вращения до требуемого значения. В состав данного устройства входят валы с шестернями, преобразующими и передающими крутящий момент.

Как работает сервопривод

Вращение выходного вала редуктора, связанного шестернями с сервоприводом, осуществляется путем запуска и остановки электродвигателя. Сам редуктор необходим для регулировки числа оборотов. Выходной вал может быть соединен с механизмами или устройствами, которыми необходимо управлять. Положение вала контролируется с помощью датчика обратной связи, способного преобразовывать угол поворота в электрические сигналы и на котором построен принцип работы всего устройства.

Этот датчик известен также, под названием энкодера или потенциометра. При повороте бегунка, его сопротивление будет изменяться. Изменения сопротивления находится в прямой пропорциональной зависимости с углом поворота энкодера. Данный принцип работы позволяет устанавливать и фиксировать механизмы в определенном положении.

Дополнительно каждый серводвигатель имеет электронную плату, обрабатывающую внешние сигналы, поступающие от потенциометра. Далее выполняется сравнение параметров, по результатам которого производится запуск или остановка электродвигателя. Следовательно, с помощью электронной платы поддерживается отрицательная обратная связь.

Подключить серводвигатель можно с помощью трех проводников. По двум из них подается питание к электродвигателю, а третий служит для прохождения сигналов управления, приводящих вал в определенное положение.

Предотвратить чрезмерные динамические нагрузки на электродвигатель возможно с помощью плавного разгона или такого же плавного торможения. Для этого применяются более сложные микроконтроллеры, обеспечивающие более точный контроль и управление позицией рабочего элемента. В качестве примера можно привести жесткий диск компьютера, в котором головки устанавливаются в нужную позицию с помощью точного привода.

Управление серводвигателем

Основное условие, чтобы серводвигатель мог нормально работать, заключается в их функционировании совместно с так называемой системой G-кодов. Эти коды представляют собой набор команд управления, заложенный в специальную программу.

Если в качестве примера взять ЧПУ - числовое программное управление, то в данном случае сервоприводы будут взаимодействовать с . В соответствии с уровнем входного напряжения они способны изменить значение напряжения на возбуждающей обмотке или якоре электродвигателя.

Непосредственное управление серводвигателем и всей системой осуществляется из одного места - блока управления. Когда отсюда поступает команда на прохождение определенного расстояния по оси координат Х, в цифровом аналоговом преобразователе возникает напряжение определенной величины, которое и поступает в качестве питания привода этой координаты. В серводвигателе начинается вращательное движение ходового винта, связанного с энкодером и исполнительным органом основного механизма.

В энкодере вырабатываются импульсы, подсчитываемые блоком, выполняющим управление сервоприводом. В программе заложено соответствие определенного количества сигналов с энкодера, установленному расстоянию, которое должен пройти исполняющий механизм. В нужное время аналоговый преобразователь, получив установленное число импульсов, прекращает выдачу выходного напряжения, в результате, серводвигатель останавливается. Точно так же под влиянием импульсов восстанавливается напряжение, и возобновляется работа всей системы.

Виды и характеристики

Серводвигатели выпускаются в самых разных вариантах, позволяющих использовать их во многих областях. Основные конструкции разделяются на коллекторные и , предназначенные для работы от постоянного и переменного тока.

Кроме того, каждый сервомотор может быть синхронным и асинхронным. Синхронные устройства обладают способностью задавать высокоточную скорость вращения, а также углы поворотов и ускорение. Эти приводы очень быстро набирают номинальную скорость вращения. Сервоприводы в асинхронном исполнении управляются за счет изменения параметров питающего тока, когда его частота меняется с помощью инвертора. Они с высокой точностью выдерживают заданную скорость даже при самых низких оборотах.

В зависимости от принципиальной схемы и конструкции, сервоприводы могут быть электромеханическими и электрогидромеханическими. Первый вариант, включающий редуктор и двигатель, отличается низким быстродействием. Во втором случае действие происходит очень быстро за счет движения поршня в цилиндре.

Каждый сервопривод характеризуется определенными параметрами:

  • Крутящий момент или усилие, создаваемое на валу. Считается наиболее важным показателем работы сервопривода. Для каждой величины напряжения существует собственный крутящий момент, отражаемый в паспорте изделия.
  • Скорость поворота. Данный параметр представляет собой определенный период времени, который требуется, чтобы изменить позицию выходного вала на 600. Эта характеристика также зависит от конкретного значения напряжения.
  • Максимальный угол поворота, на который может развернуться выходной вал. Чаще всего эта величина составляет 180 или 3600.
  • Все сервоприводы разделяются на цифровые и аналоговые. В зависимости от этого и осуществляется управление сервоприводом.
  • Питание серводвигателей. В большинстве моделей используется напряжение от 4,8 до 7,2В. Питание и управление осуществляется с помощью трех проводников.
  • Возможность модернизации в сервопривод постоянного вращения.
  • Материалы для редуктора могут использоваться самые разные. Шестерни изготавливаются из металла, карбона, пластика или комбинированных составов. Каждый из них обладает своими преимуществами и недостатками. Например, пластиковые детали плохо выдерживают ударные нагрузки, но устойчивы к износу в процессе длительной эксплуатации. Металлические шестерни, наоборот, быстро изнашиваются, зато они обладают высокой устойчивостью к динамическим нагрузкам.

Плюсы и минусы сервомоторов

Благодаря унифицированным размерам, эти устройства легко и просто устанавливаются в любые конструкции. Они безотказны и надежны, каждый из них работает практически бесшумно, что имеет большое значение при их эксплуатации на сложных и ответственных участках. Даже на невысоких скоростях можно добиться точности и плавных перемещений. Каждый сервопривод может быть настроен персоналом, в зависимости решения тех или иных задач.

В качестве недостатков отмечаются определенные сложности при настройках и сравнительно высокая стоимость.

Является элементом точной кинематики, позволяющий достигать точное позиционирование механизмов. Но в отличии от шагового двигателя, сервопривод имеет обратную связь, позволяющую в любой момент отследить точный угол поворота вала. В качестве источника обратной связи могут быть использованы различные типы энкодеров и потенциометры.

В статье рассмотрим подключение и работу с младшими представителями сервоприводов - т.н. сервомашинками - горячо любимыми среди роботостроителей и моделистов.

Конструктив

Сервомашинка состоит из корпуса, в котором заключен небольшой коллекторный электромотор, редуктор и управляющая электроника.

В качестве обратной связи применяются потенциометры. Поэтому эти сервы имеют ограничения по углу поворота вала вокруг оси. Так, в приобретенных мной сервах Futaba S3003, угол поворота выходного вала составляет 225°.

Технические характеристики Futaba S3003

Параметр Напряжение питания, В
4,8 6,0
Усилие на валу 3,2 кг/см 4,1 кг/см
Скорость позиционирования 0,23 sec/60° 0,19 sec/60°
Размер, Д х Ш х В 41мм х 20мм х 36мм
Масса, г 37

Потенциометр обратной связи посажен прямо на выходной вал, благодаря ему блок управления сервомашинки отслеживает точное положение вала: сопротивление потенциометра изменяется пропорционально углу поворота . Считав сопротивление, блок управления сравнивает это значение с тем, которое должно быть при заданном положении вала. Если эти значения отличаются, блок управления дает команду двигателю повернуть вал в заданном направлении, уменьшая разницу значений. Достигнув положения вала, когда значение с потенциометра совпадает с заданным значением, двигатель останавливается. Считывание значения с потенциометра и его сравнение происходит с большой частотой, поэтому выходной вал будет стремиться занять заданное положение при изменении внешней нагрузки.

Конструкция сервомашинки выполнена таким образом, что крутящий момент от двигателя к выходному валу передается через редуктор с большим передаточным числом, поэтому при малых размерах и энергозатратах, сервомашинки могут обеспечивать большую тягу.


Управление

В качестве управляющего сигнала служит импульсный сигнал с периодом 20 мс и с длительностью от 0,8 до 2,2 мс. Это некий стандарт управления сервомашинок. Чем длинее пришел импульс, тем на больший угол повернется вал сервомашинки. Для разгона сервомашинки период следования импульсов можно уменьшить до 10 мс.


Управляющий сигнал подается на серву по сигнальному проводу S. В моей сервомашинке он белый, в некоторых моделях - желтый. Помимо сигнального провода из сервомашинки выходят два провода - линии питания - земля (черный) и питание (красный)


Программная часть

Как видно управлять сервой достаточно просто - достаточно гнать импульсный сигнал с нужной частотой и скважностью. Этот сигнал можно генериовать ШИМ , или написать свою функцию обработки прерывания по таймеру. Но в Bascom-AVR уже есть встроенная команда для управления сервомашинками - Servo . Ее и рассмотрим.

Для начала необходимо сконфигурировать подключение сервомашинок:

Config Servos = X , Servo1 = Portb . 0 , Servo2 = Portb . 1 , Reload = Var

Servos = X ; указывается количество подключаемых сервомашинок, возможно подключение до 14 серв.

Servo1 = Portb . 0 ; указывается порт подключения первой сервы

Servo2 = Portb . 1 ; указывается порт подключения второй сервы

Reload = Var ; здесь Var время в микросекундах, которое проходит между прерываниями от таймера.

По умолчанию для организации прерываний используется Timer0, поэтому использовать его в своих целях уже не получиться. Bascom-AVR позволяет перебросить обслуживание прерываний на любой другой таймер, например чтобы освободить Timer0 и задествовать Timer1 достаточно указать это в строке конфигурации:

Config Servos = 2 , Servo1 = Portb . 0 , Servo2 = Portb . 1 , Reload = 10 , Timer = Timer1


После того как все сконфигурировали остается только рулить нашей сервомашинкой. Это делается следующей командой

Servo ( a) = F

а - порядковый номер сервомашинки

F - переменная, значение которой задает угол поворота вала сервы

Тестовый код целиком:


$regfile = "m8def.dat" "микроконтроллер ATmega8
$crystal = 8000000 "частота работы 8МГц

"конфигурируем порты для подключения сервоприводов
Config Portb . 0 = Output
Config Portb . 1 = Output

"настраиваем подключения двух сервомашинок
Config Servos = 2 , Servo1 = Portb . 0 , Servo2 = Portb . 1 , Reload = 15

Dim F As Byte "переменная для первой сервы
Dim S As Byte "переменная для второй сервы

"разрешаем прерывания
Enable Interrupts

F = 15 "значением переменной задается угол поворота вала сервомашинки
S = 70

Do

Servo (1 ) = F
Servo (2 ) = S

Loop

End


Схему подключения не привожу, думаю один сигнальный провод проблем не вызовет;) Его можно подключать к порту микроконтроллера напрямую, а можно через резистор сопротивлением пару сотен ом - для перестраховки.

Меняя значения перемменных F и S можем менять угол поворота первой и второй сервомашинок соответственно. Чем меньше значение параметра Reload, тем шустрее наши сервомашинки будут поворачиваться на нужный угол.

Для своих серв подобрал рабочий диапаз он значений Servo(a), в которых вал может вращаться. Крайнее положения вал занимает при значении 0 и 150, соответственно при значении 75 вал занимает промежуточное положение.


Servo(a) =0 Servo(a) =75 Servo(a) =150

В данной статье рассмотрим устройство, принцип работы, характеристики и габаритные размеры сервоприводов.

Определение понятия сервопривод

Сервопривод (следящий привод) — привод с управлением через отрицательную обратную связь, позволяющую точно управлять параметрами движения.
Сервоприводом является любой тип механического привода (устройства, рабочего органа), имеющий в составе датчик (положения, скорости, усилия и т. п.) и блок управления приводом (электронную схему или механическую систему тяг), автоматически поддерживающий необходимые параметры на датчике (и, соответственно, на устройстве) согласно заданному внешнему значению (положению ручки управления или численному значению от других систем).
Проще говоря, сервопривод является «автоматическим точным исполнителем» — получая на вход значение управляющего параметра (в режиме реального времени), он «своими силами» (основываясь на показаниях датчика) стремится создать и поддерживать это значение на выходе исполнительного элемента.

Используемые компоненты (купить в Китае):

Полезная вещь для проверки сервориводов

Разобравшись с определением перейдем к непосредственному разбору принципа работы сервопривода
Для большей наглядности сразу приведу схематичную картинку внутренностей сервопривода.

Приступим к разбору.
Для подключения к контроллеру от сервопривода тянется 3 провода обжатых чаще всего стандартным 3 пиновым разъемом с шагом 2.54мм (1). Цвета проводов могут варьироваться. Коричневый или черный - земля (минус), красный - плюс источника питания, оранжевый или белый - управляющий сигнал. Об управляющих сигналах расскажу чуть позже.
Итак, сигнал приходит на плату которая и будет данный сигнал преобразовывать в импульсы посылаемые непосредственно на двигатель (2). К ней мы вернемся чуть позже.
Наконец-то мы дошли до той детали, благодаря которой мы и можем считывать и задавать угол поворота сервопривода (3). В интернете нашел отличную GIFку демонстрирующую принцип работы потенциометра.

Принцип работы потенциометра прост. Потенциометр имеет 3 вывода. На крайние выводы подается плюс и минус питания (полярность не имеет значения), между выводами имеется резистивное вещество, по которому и движется ползунок соединенный со средним выводом. В нашем случае договоримся что на крайнем левом у нас плюс, на крайнем правом минус. Вращая крутилку из левого крайнего положения в крайнее правое положение мы увеличиваем сопротивление, а вместе с тем и уменьшаем напряжение от входного до условно минимального, которое будем снимать со среднего вывода. Значение минимального напряжения будет зависеть от величины максимального сопротивления у конкретно взятого потенциометра. В рассматриваемых нами сервоприводах чаще всего устанавливают потенциометры на 5 килоОм.
С устройством мы разобрались, теперь вернемся к сервоприводу. Крутилка сервопривода у нас состыкована с выходным валом сервопривода, следовательно при повороте выходного вала мы меняем значение на потенциометре. Условно примем входное напряжение (ручка потенциометра в крайнем правом положении) равное пяти вольтам, пускай при крайнем левом положении потенциометр погасит все напряжение и минимальное напряжение будет равным нулю, а в средней точке тогда у нас будет два с половиной вольта. Из данных условий у нас получается что при угле в 180° на выходе потенциометра у нас 5 вольт, при 90° 2,5 вольта, а при 0° 0 вольт. Для чего я это так подробно рассказываю? Возвращаемся снова к управляющей плате.
Сервопривод находится в положении 0°. На вход платы управления мы подаем управляющий сигнал который несет в себе информацию о повороте сервопривода на 90°. Электронная начинка платы считывает показания потенциометра, на потенциометре видит 0 вольт, а в программе забито что должно быть 2,5. Вот и весь смысл. Плата анализирует разницу, затем выбирает направление вращения мотора и будет вращать его до тех пор пока напряжение на выходе потенциометра не станет равным двум с половиной вольтам.
Едем дальше. Чтоб не листать страницу снова вверх, в поисках картинки, приведу её ещё раз.

Микромоторчик (4) не в состоянии развить мощное усилие на валу (момент), однако обладает высокой скоростью вращения. Для преобразования высокой угловой скорости с малым моментом в низкую с высоким, которая нам как раз и нужна, следует использовать редуктор. Редуктор представлен шестернями соединяющими вал моторчика и выходной вал (5). Шестерня с меньшим количеством зубцов ведет шестерню с большим. от этого снижается скорость но повышается момент, Более наглядно понять принцип работы редуктора можно взяв в руки сервопривод и попытаться повернуть качалку сервопривода. Сложно? Конечно, ведь с обратной стороны редуктор превращается в мультипликатор, механическое устройство которое наоборот преобразует низкооборотный мощный момент в высокооборотный слабый.


Основные характеристики сервоприводов:

. Усилие на валу

Усилие на валу, он же момент это один из самых важных показателей сервопривода и измеряется в кг/см. В характеристиках обычно указывается для двух вариантов напряжения питания, чаще всего для 4.8В и 6.0В.
Момент в 15 кг/см означает что сервопривод способен удержать неподвижно в горизонтальном положении качалку с плечом в 1 см и подвешенным к ней грузом массой 15 кг либо же удержать груз в 1 кг на качалке с плечом в 15 см.
Длина плеча качалки обратно пропорциональна массе удерживаемого груза. Для данного привода при длине в 2 см мы получим 7.5 кг, а уменьшив длину рычага до 0,5 см получим уже целых 30кг

. Скорость поворота

Скорость поворота также является одной из самых важных характеристик. Ее принято указывать во временном эквиваленте требуемом для изменения положения выводного вала сервопривода на 60°. Данную характеристику также чаще всего указывают для 4.8В и 6.0В.
Например характеристика 0.13сек/60° означает что поворот данной сервы на 60° может быть совершен минимум за 0.13 секунды.

. Тип сервоприводов

Цифровые либо аналоговые

. Напряжение питания

Для большинства хоббийных сервоприводов колеблется в диапазоне от 4.8 до 7.2В

. Угол поворота

Это максимальный угол на который может повернуть выходной вал. Сервоприводы по углам поворота в основном бывают на 180° и 360°.

. Сервопривод постоянного вращения

Выпускаются сервоприводы и постоянного вращения. Если нет возможности приобрести такой, но очень нужно, то можно переделать обычный сервопривод.

. Тип редуктора

Редукторы сервопривода выполняют из металла, карбона, пластика либо компонуют из металлических и пластиковых шестерней.

Пластиковые шестерни слабо выдерживают нагрузки и удары, зато обладают очень малым износом. Карбоновые прочнее пластиковых, но намного дороже. Металлические выдерживают большие нагрузки, удары, падения, однако износ у этого типа шестерней самый большой.
Также хочется отметить что и выходной вал на различных сервоприводах устанавливается по разному. На большинстве вал скользит на втулках скольжения, на более мощных сервоприводах уже используются шариковые подшипники.

Типоразмеры сервоприводов:

Сервоприводы делятся на 4 основных типоразмера. Далее приводятся типы сервоприводов с указанием веса и размеров. Размеры различных сервоприводов могут незначительно откланяться от приведенных ниже.

Микро: 24мм x 12мм x 24мм, вес: 8-10 г.

Мини: 30мм x 15мм x 35мм, вес 23-25 г.

Стандарт: 40мм x 20мм x 37мм, вес: 50-80 г.

Гигант: 49x25x40 мм, вес 50-90 г.

Цикл статей о сервоприводах:

Купить в России



Понравилась статья? Поделиться с друзьями: