Как узнать потенциальную энергию. Что такое потенциальная энергия

Потенциальной энергией называется энергия, которая определяется взаимным положением взаимодействующих тел или частей одного и того же тела.

Потенциальной энергией, например, обладает тело, поднятое над Землей, потому что энергия тела зависит от взаимного положения его и Земли и их взаимного притяжения. Потенциальная энергия тела, лежащего на Земле, равна нулю. А потенциальная энергия этого тела, поднятого на некоторую высоту, определится работой, которую совершит сила тяжести при падении тела на Землю. Огромной потенциальной энергией обладает речная вода, удерживаемая плотиной. Падая вниз, она совершает работу, приводя в движение мощные турбины электростанций.

Потенциальную энергию тела обозначают символом E п.

Так как E п = A, то

E п = Fh

E п = gmh

E п – потенциальная энергия; g – ускорение свободного падения, равное 9,8 Н/кг; m – масса тела, h – высота, на которую поднято тело.

Кинетической энергией называется энергия, которой обладает тело вследствие своего движения.

Кинетическая энергия тела зависит от его скорости и массы. Например, чем больше скорость падения воды в реке и чем больше масса этой воды, тем сильнее будут вращаться турбины электростанций.

mv 2
E k = --
2

E k – кинетическая энергия; m – масса тела; v – скорость движения тела.

В природе, технике, быту один вид механической энергии обычно превращается в другой: потенциальная в кинетическую и кинетическая в потенциальную.

Например, при падении воды с плотины ее потенциальная энергия превращается в кинетическую. В качающемся маятнике периодически эти виды энергии переходят друг в друга.

Кинетическая энергия - это энергия движения тела. Соотвественно, если у нас есть какой-то объект, обладающий хоть какой-то массой и хоть какой-то скоростью, то он и обладает кинетической энергией. Однако относительно разных систем отсчета эта кинетическая энергия у одного и того же объекта может быть разной.

Пример. Есть бабушка, которая относительно земли нашей планеты находится в состоянии покоя, то есть не движется и, скажем, сидит на остановке в ожидании своего автобуса. Тогда относительно нашей планеты ее кинетическая энергия равна нулю. Но если посмотреть на эту же бабушку с Луны или с Солнца, относительно которых можно наблюдать движение планеты и, соответственно, этой бабушки, которая находится на нашей планете, то бабушка уже будет обладать кинетической энергией относительно упомянутых небесных тел. И тут приезжает автобус. Эта самая бабушка быстро встает и бежит занимать положенное ей место. Теперь относительно планеты она уже не в покое, а вполне себе движется. А значит и обладает кинетической энергией. И чем толще бабушка и быстрее, тем больше ее кинетическая энергия.

Есть несколько фундаментальных видов энергии - основных. Расскажу, например, про механические. К ним относятся энергия кинетическая, которая зависит от скорости и массы объекта, энергия потенциальная, которая зависит от того, где вы возьмете нулевой уровень потенциальной энергии, и от того положения, где находится этот объект относительно нулевого уровня потенциальной энергии. То есть потенциальная энергия - энергия, зависящая от положения объекта. Эта энергия характеризует работу, совершаемую полем, в котором находится объект, по его перемещению.

Пример. Несете вы в руках огромную коробку и падаете. Коробка лежит на полу. Выходит, что нулевой уровень потенциальной энергии у вас будет находится, соответственно, на уровне пола. Тогда верхняя часть коробки будет обладать большей потенциальной энергией, так как она находится выше пола и выше нулевого уровня потенциальной энергии.

Глупо говорить про энергию, не упомянув закон о ее сохранении. Таким образом, по закону сохранения энергии, эти два ее вида, описывающих состояние объекта, ни откуда не берутся и никуда не исчезают, а только переходят друг в друга.

А вот и пример. Падаю я с высоты дома, изначально имея потенциальную энергию относительно земли в момент перед прыжком, а моя кинетическая энергия пренебрежимо мала, поэтому можем приравнять её к нулю. Вот я отрываю ножки от карниза и моя потенциальная энергия начинает уменьшаться, так как высота, на которой я нахожусь, становится все меньше и меньше. В этот же момент при падении вниз я постепенно приобретаю кинетическую энергию, так как падаю вниз все с большей скоростью. В момент падения я уже обладаю максимальной кинетической энергией, но потенциальная равно нулю, такие дела.

Повседневный опыт показывает, что недвижимые тела можно привести в движение, а движимые остановить. Мы с вами постоянно что-то делаем, мир вокруг суетится, светит солнце... Но откуда у человека, животных, да и у природы в целом берутся силы для выполнения этой работы? Исчезает ли бесследно? Начнет ли двигаться одно тело без изменения движения другого? Обо всем этом мы расскажем в нашей статье.

Понятие энергии

Для работы двигателей, которые придают движение автомобилям, тракторам, тепловозам, самолетам, нужно топливо, которое является источником энергии. Электродвигатели придают движение станкам при помощи электроэнергии. За счет энергии воды, падающей с высоты, оборачиваются гидротурбины, соединенные с электрическими машинами, производящими электрический ток. Человеку для того, чтобы существовать и работать, также нужна энергия. Говорят, что для того, дабы выполнять какую-нибудь работу, необходима энергия. Что же такое энергия?

  • Наблюдение 1. Поднимем над землей мяч. Пока он пребывает в состоянии спокойствия, механическая работа не выполняется. Отпустим его. Под действием силы тяжести мяч падает на землю с определенной высоты. Во время падения мяча выполняется механическая работа.
  • Наблюдение 2. Сомкнем пружину, зафиксируем ее нитью и поставим на пружину гирьку. Подожжем нить, пружина распрямится и поднимет гирьку на некую высоту. Пружина выполнила механическую работу.
  • Наблюдение 3. На тележку закрепим стержень с блоком в конце. Через блок перекинем нить, один конец которой намотан на ось тележки, а на другом висит грузик. Отпустим грузик. Под действием он будет опускаться книзу и придаст тележке движение. Грузик выполнил механическую работу.

После анализа всех вышеперечисленных наблюдений можно сделать вывод, что если тело или несколько тел во время взаимодействия выполняют механическую работу, то говорят, что они имеют механическую энергию, либо энергию.

Понятие энергии

Энергия (от греч. слова энергия - деятельность) - это физическая величина, которая характеризирует способность тел выполнять работу. Единицей энергии, а также и работы в системе СИ является один Джоуль (1 Дж). На письме энергия обозначается буквой Е . Из вышеуказанных экспериментов видно, что тело выполняет работу тогда, когда переходит из одного состояния в другое. Энергия тела при этом меняется (уменьшается), а выполненная телом механическая работа равна результату изменения ее механической энергии.

Виды механической энергии. Понятие потенциальной энергии

Различают 2 вида механической энергии: потенциальную и кинетическую. Сейчас подробнее рассмотрим потенциальную энергию.

Потенциальная энергия (ПЭ) - определяющаяся взаимным положением тел, которые взаимодействуют, либо частями того самого тела. Поскольку любое тело и земля притягивают друг друга, то есть взаимодействуют, ПЭ тела, поднятого над землей, будет зависеть от высоты поднятия h . Чем выше поднято тело, тем больше его ПЭ. Экспериментально установлено, что ПЭ зависит не только от высоты, на которую оно поднято, но и от массы тела. Если тела были подняты на одинаковую высоту, то тело, имеющее большую массу, будет иметь и большую ПЭ. Формула данной энергии выглядит следующим образом: E п = mgh, где E п - это потенциальна энергия, m - масса тела, g = 9,81 Н/кг, h - высота.

Потенциальная энергия пружины

Потенциальной энергией упруго деформированного тела называют физическую величину E п, которая при изменении скорости поступательного движения под действием уменьшается ровно на столько, на сколько растет кинетическая энергия. Пружины (как и другие упруго деформированные тела) имеют такую ПЭ, которая равна половине произведения их жесткости k на квадрат деформации: x = kx 2: 2.

Энергия кинетическая: формула и определение

Иногда значение механической работы можно рассматривать без употребления понятий силы и перемещения, акцентировав внимание на том, что работа характеризует изменение энергии тела. Все, что нам может потребоваться, - это масса некоего тела и его начальная и конечная скорости, что приведет нас к кинетической энергии. Кинетическая энергия (КЭ) - это энергия, принадлежащая телу вследствие собственного движения.

Кинетическую энергию имеет ветер, ее используют для придания движения ветряным двигателям. Движимые оказывают давление на наклонные плоскости крыльев ветряных двигателей и заставляют их оборачиваться. Вращательное движение при помощи систем передач передается механизмам, выполняющим определенную работу. Движимая вода, оборачивающая турбины электростанции, теряет часть своей КЭ, выполняя работу. Летящий высоко в небе самолет, помимо ПЭ, имеет КЭ. Если тело пребывает в состоянии покоя, то есть его скорость относительно Земли равна нулю, то и его КЭ относительно Земли равна нулю. Экспериментально установлено, что чем больше масса тела и скорость, с которой оно движется, тем больше его КЭ. Формула кинетической энергии поступательного движения в математическом выражении следующая:

Где К - кинетическая энергия, m - масса тела, v - скорость.

Изменение кинетической энергии

Поскольку скорость движения тела является величиной, зависящей от выбора системы отсчета, значение КЭ тела также зависит от ее выбора. Изменение кинетической энергии (ИКЭ) тела происходит вследствие действия на тело внешней силы F . Физическую величину А , которая равна ИКЭ ΔЕ к тела вследствие действия на него силы F, называют работой: А = ΔЕ к. Если на тело, которое движется со скоростью v 1 , действует сила F , совпадающая с направлением, то скорость движения тела вырастет за промежуток времени t к некоторому значению v 2 . При этом ИКЭ равно:

Где m - масса тела; d - пройденный путь тела; V f1 = (V 2 - V 1); V f2 = (V 2 + V 1); a = F: m . Именно по этой формуле высчитывается, на сколько изменяется энергия кинетическая. Формула также может иметь следующую интерпретацию: ΔЕ к = Flcos , где cosά является углом между векторами силы F и скорости V .

Средняя кинетическая энергия

Кинетическая энергия представляет собой энергию, определяемую скоростью движения разных точек, которые принадлежат этой системе. Однако следует помнить, что необходимо различать 2 энергии, характеризующие разные поступательное и вращательное. (СКЭ) при этом является средней разностью между совокупностью энергий всей системы и ее энергией спокойствия, то есть, по сути, ее величина - это средняя величина потенциальной энергии. Формула средней кинетической энергии следующая:

где k - это константа Больцмана; Т - температура. Именно это уравнение является основой молекулярно-кинетической теории.

Средняя кинетическая энергия молекул газа

Многочисленными опытами было установлено, что средняя кинетическая энергия молекул газа в поступательном движении при заданной температуре одна и та же, и не зависит от рода газа. Кроме того, было установлено также, что при нагревании газа на 1 о С СКЭ увеличивается на одно и то же самое значение. Сказать точнее, это значение равно: ΔЕ к = 2,07 х 10 -23 Дж/ о С. Для того чтобы вычислить, чему равна средняя кинетическая энергия молекул газа в поступательном движении, необходимо, помимо этой относительной величины, знать еще хотя бы одно абсолютное значение энергии поступательного движения. В физике достаточно точно определены эти значения для широкого спектра температур. К примеру, при температуре t = 500 о С кинетическая энергия поступательного движения молекулы Ек = 1600 х 10 -23 Дж. Зная 2 величины (ΔЕ к и Е к), мы можем как вычислить энергию поступательного движения молекул при заданной температуре, так и решить обратную задачу - определить температуру по заданным значениям энергии.

Напоследок можно сделать вывод, что средняя кинетическая энергия молекул, формулакоторой приведена выше, зависит только от абсолютной температуры (причем для любого агрегатного состояния веществ).

Закон сохранения полной механической энергии

Изучение движения тел под действием силы тяжести и сил упругости показало, что существует некая физическая величина, которую называют потенциальной энергией Е п ; она зависит от координат тела, а ее изменение приравнивается ИКЭ, которая взята с противоположным знаком: Δ Е п = -ΔЕ к. Итак, сумма изменений КЭ и ПЭ тела, которые взаимодействуют с гравитационными силами и силами упругости, равна 0 : Δ Е п + ΔЕ к = 0. Силы, которые зависят только от координат тела, называют консервативными. Силы притяжения и упругости являются консервативными силами. Сумма кинетической и потенциальной энергий тела является полной механической энергией: Е п + Е к = Е.

Этот факт, который был доказан наиболее точными экспериментами,
называют законом сохранения механической энергии . Если тела взаимодействуют силами, которые зависят от скорости относительного движения, механическая энергия в системе взаимодействующих тел не сохраняется. Примером сил такого типа, которые называются неконсервативными , являются силы трения. Если на тело действуют силы трения, то для их преодоления необходимо затратить энергию, то есть ее часть используется на выполнение работы против сил трения. Однако нарушение закона сохранения энергии здесь только мнимое, потому что он является отдельным случаем общего закона сохранения и преобразования энергии. Энергия тел никогда не исчезает и не появляется вновь: она лишь преобразуется из одного вида в другой. Этот закон природы очень важен, он выполняется повсюду. Его еще иногда называют общим законом сохранения и преобразования энергии.

Связь между внутренней энергией тела, кинетической и потенциальной энергиями

Внутренняя энергия (U) тела - это его полная энергия тела за вычетом КЭ тела как целого и его ПЭ во внешнем поле сил. Из этого можно сделать вывод, что внутренняя энергия состоит из КЭ хаотического движения молекул, ПЭ взаимодействия между ними и внутремолекулярной энергии. Внутренняя энергия - это однозначная функция состояния системы, что говорит о следующем: если система находится в данном состоянии, ее внутренняя энергия принимает присущие ему значения, независимо от того, что происходило ранее.

Релятивизм

Когда скорость тела близка к скорости света, кинетическую энергию находят по следующей формуле:

Кинетическая энергия тела, формула которой была написана выше, может также рассчитываться по такому принципу:

Примеры задач по нахождению кинетической энергии

1. Сравните кинетическую энергию шарика массой 9 г, летящего со скоростью 300 м/с, и человека массой 60 кг, бегущего со скоростью 18 км/час.

Итак, что нам дано: m 1 = 0,009 кг; V 1 = 300 м/с; m 2 = 60 кг, V 2 = 5 м/с.

Решение:

  • Энергия кинетическая (формула): Е к = mv 2: 2.
  • Имеем все данные для расчета, а поэтому найдем Е к и для человека, и для шарика.
  • Е к1 = (0,009 кг х (300 м/с) 2) : 2 = 405 Дж;
  • Е к2 = (60 кг х (5 м/с) 2) : 2= 750 Дж.
  • Е к1 < Е к2.

Ответ: кинетическая энергия шарика меньше, чем человека.

2. Тело с массой 10 кг было поднято на высоту 10 м, после чего его отпустили. Какую КЭ оно будет иметь на высоте 5 м? Сопротивлением воздуха разрешается пренебречь.

Итак, что нам дано: m = 10 кг; h = 10 м; h 1 = 5 м; g = 9,81 Н/кг. Е к1 - ?

Решение:

  • Тело определенной массы, поднятое на некую высоту, имеет потенциальную энергию: E п = mgh. Если тело падает, то оно на некоторой высоте h 1 будет иметь пот. энергию E п = mgh 1 и кин. энергию Е к1. Чтобы была правильно найдена энергия кинетическая, формула, которая была приведена выше, не поможет, а поэтому решим задачу по нижеследующему алгоритму.
  • В этом шаге используем закон сохранения энергии и запишем: Е п1 + Е к1 = Е п.
  • Тогда Е к1 = Е п - Е п1 = mgh - mgh 1 = mg(h-h 1).
  • Подставив наши значения в формулу, получим: Е к1 = 10 х 9,81(10-5) = 490,5 Дж.

Ответ: Е к1 = 490,5 Дж.

3. Маховик, имеющий массу m и радиус R, оборачивается вокруг оси, проходящей через его центр. Угловая скорость оборачивания маховика - ω . Дабы остановить маховик, к его ободу прижимают тормозную колодку, действующей на него с силой F трения . Сколько оборотов сделает маховик до полной остановки? Учесть, что масса маховика сосредоточена по ободу.

Итак, что нам дано: m; R; ω; F трения. N - ?

Решение:

  • При решении задачи будем считать обороты маховика подобными оборотам тонкого однородного обруча с радиусом R и массой m, который оборачивается с угловой скоростью ω.
  • Кинетическая энергия такого тела равна: Е к = (Jω 2) : 2, где J = mR 2 .
  • Маховик остановится при условии, что вся его КЭ истратится на работу по преодолению силы трения F трения, возникающей между тормозной колодкой и ободом: Е к = F трения *s , где s - 2 πRN = (mR 2 ω 2) : 2, откуда N = (mω 2 R) : (4πF тр).

Ответ: N = (mω 2 R) : (4πF тр).

В заключение

Энергия - это важнейшая составляющая во всех аспектах жизни, ведь без нее никакие тела не смогли бы выполнять работу, в том числе и человек. Думаем, статья вам внятно дала понять, что собой представляет энергия, а развернутое изложение всех аспектов одной из ее составляющих - кинетической энергии - поможет вам осознать многие процессы, происходящих на нашей планете. А уж о том, как найти кинетическую энергию, вы можете узнать из приведенных выше формул и примеров решения задач.

Любое тело всегда обладает энергией. При наличии движения это очевидно: есть скорость либо ускорение, что, помноженное на массу, дает искомый результат. Однако в случае, когда тело неподвижно, оно, как ни парадоксально, также может быть охарактеризовано как обладающее энергией.

Итак, возникает при движении, потенциальная - при взаимодействии нескольких тел. Если с первой все более-менее очевидно, то нередко сила, возникающая между двумя неподвижными объектами, остается за гранью понимания.

Общеизвестно, что планета Земля воздействует на все тела, находящиеся на ее поверхности за счет То есть она притягивает любой предмет с определенной силой. При перемещении предмета, изменении его высоты, происходит также изменение показателей энергии. Непосредственно в момент поднятия тело обладает ускорением. Однако в высшей своей точке, когда предмет (пусть даже на долю секунды) неподвижен, он обладает потенциальной энергией. Все дело в том, что его по-прежнему тянет к себе поле Земли, с которым искомое тело взаимодействует.

Говоря иначе, потенциальная энергия возникает всегда за счет взаимодействия нескольких предметов, образующих систему, вне зависимости от размеров самих предметов. При этом по умолчанию один из них представлен нашей планетой.

Потенциальная энергия - величина, зависящая от массы предмета и высоты, на которую он поднят. Международное обозначение - латинские буквы Ep. выглядит следующим образом:

Где m - масса, g - ускорение h - высота.

Важно рассмотреть более подробно параметр высоты, поскольку он нередко становится причиной затруднений при решении задач и понимании значения рассматриваемой величины. Дело в том, что любое вертикальное передвижение тела имеет свою начальную и конечную точку. Для корректного нахождения потенциальной энергии взаимодействия тел важно знать начальную высоту. Если она не указана, то ее значение равняется нулю, то есть совпадает с поверхностью Земли. В случае же, если известна как начальная точка отсчета, так и конечная высота, необходимо найти разницу между ними. Получившееся число и станет искомым h.

Важно также отметить, что потенциальная энергия системы может иметь отрицательное значение. Предположим, мы уже подняли тело над уровнем Земли, стало быть, оно имеет высоту, которую назовем начальной. При его опускании формула будет выглядеть таким образом:

Очевидно, что h1 больше h2, следовательно, значение будет отрицательным, что и придаст всей формуле знак минус.

Любопытно, что потенциальная энергия тем выше, чем дальше от поверхности Земли расположено тело. Для того чтобы лучше понять этот факт, задумаемся: чем выше нужно поднять тело над Землей, тем основательнее совершенная работа. Чем выше значение работы любой силы, тем, условно говоря, больше вложено энергии. Потенциальная энергия, иначе говоря, - это энергия возможности.

Подобным образом можно измерить энергию взаимодействия тел при растяжении предмета.

В рамках рассматриваемой темы необходимо отдельно обсудить взаимодействие заряженной частицы и электрического поля. В подобной системе будет наличествовать потенциальная энергия заряда. Рассмотрим этот факт подробнее. На любой заряд, находящийся в пределах электрического поля, действует одноименная сила. Перемещение частицы происходит за счет работы, производимой этой силой. Учитывая, что собственно заряд и (точнее говоря, тело, его создавшее) - это система, мы также получаем потенциальную энергию перемещения заряда в рамках заданного поля. Поскольку данный вид энергии - особый случай, ему было присвоено название электростатического.

Если тело некоторой массы m двигалось под действием приложенных сил, и его скорость изменилась от до то силы совершили определенную работу A .

Работа всех приложенных сил равна работе равнодействующей силы (см. рис. 1.19.1).

Между изменением скорости тела и работой, совершенной приложенными к телу силами, существует связь. Эту связь проще всего установить, рассматривая движение тела вдоль прямой линии под действием постоянной силы В этом случае векторы силы перемещения скорости и ускорения направлены вдоль одной прямой, и тело совершает прямолинейное равноускоренное движение. Направив координатную ось вдоль прямой движения, можно рассматривать F , s , υ и a как алгебраические величины (положительные или отрицательные в зависимости от направления соответствующего вектора). Тогда работу силы можно записать как A = Fs . При равноускоренном движении перемещение s выражается формулой

Отсюда следует, что

Это выражение показывает, что работа, совершенная силой (или равнодействующей всех сил), связана с изменением квадрата скорости (а не самой скорости).

Физическая величина, равная половине произведения массы тела на квадрат его скорости, называется кинетической энергией тела:

Работа приложенной к телу равнодействующей силы равна изменению его кинетической энергии и выражается теоремой о кинетической энергии:

Теорема о кинетической энергии справедлива и в общем случае, когда тело движется под действием изменяющейся силы, направление которой не совпадает с направлением перемещения.

Кинетическая энергия - это энергия движения. Кинетическая энергия тела массой m , движущегося со скоростью равна работе, которую должна совершить сила, приложенная к покоящемуся телу, чтобы сообщить ему эту скорость:

Если тело движется со скоростью , то для его полной остановки необходимо совершить работу

В физике наряду с кинетической энергией или энергией движения важную роль играет понятие потенциальной энергии или энергии взаимодействия тел .

Потенциальная энергия определяется взаимным положением тел (например, положением тела относительно поверхности Земли). Понятие потенциальной энергии можно ввести только для сил, работа которых не зависит от траектории движения и определяется только начальным и конечным положениями тела . Такие силы называются консервативными .

Работа консервативных сил на замкнутой траектории равна нулю . Это утверждение поясняет рис. 1.19.2.

Свойством консервативности обладают сила тяжести и сила упругости. Для этих сил можно ввести понятие потенциальной энергии.

Если тело перемещается вблизи поверхности Земли, то на него действует постоянная по величине и направлению сила тяжести . Работа этой силы зависит только от вертикального перемещения тела. На любом участке пути работу силы тяжести можно записать в проекциях вектора перемещения на ось OY , направленную вертикально вверх:

ΔA = F т Δs cos α = -mg Δs y ,

где F т = F т y = -mg - проекция силы тяжести, Δs y - проекция вектора перемещения. При подъеме тела вверх сила тяжести совершает отрицательную работу, так как Δs y > 0. Если тело переместилось из точки, расположенной на высоте h 1 , в точку, расположенную на высоте h 2 от начала координатной оси OY (рис. 1.19.3), то сила тяжести совершила работу

Эта работа равна изменению некоторой физической величины mgh , взятому с противоположным знаком. Эту физическую величину называют потенциальной энергией тела в поле силы тяжести

Она равна работе, которую совершает сила тяжести при опускании тела на нулевой уровень.

Работа силы тяжести равна изменению потенциальной энергии тела, взятому с противоположным знаком.

Потенциальная энергия E р зависит от выбора нулевого уровня, т. е. от выбора начала координат оси OY . Физический смысл имеет не сама потенциальная энергия, а ее изменение ΔE р = E р2 - E р1 при перемещении тела из одного положения в другое. Это изменение не зависит от выбора нулевого уровня.

скриншот квеста с отскоком мячика от мостовой

Если рассматривать движение тел в поле тяготения Земли на значительных расстояниях от нее, то при определении потенциальной энергии необходимо принимать во внимание зависимость силы тяготения от расстояния до центра Земли (закон всемирного тяготения ). Для сил всемирного тяготения потенциальную энергию удобно отсчитывать от бесконечно удаленной точки, т. е. полагать потенциальную энергию тела в бесконечно удаленной точке равной нулю. Формула, выражающая потенциальную энергию тела массой m на расстоянии r от центра Земли, имеет вид:

где M - масса Земли, G - гравитационная постоянная.

Понятие потенциальной энергии можно ввести и для силы упругости. Эта сила также обладает свойством консервативности. Растягивая (или сжимая) пружину, мы можем делать это различными способами.

Можно просто удлинить пружину на величину x , или сначала удлинить ее на 2x , а затем уменьшить удлинение до значения x и т. д. Во всех этих случаях сила упругости совершает одну и ту же работу, которая зависит только от удлинения пружины x в конечном состоянии, если первоначально пружина была не деформирована. Эта работа равна работе внешней силы A , взятой с противоположным знаком (см 1.18):

где k - жесткость пружины. Растянутая (или сжатая) пружина способна привести в движение прикрепленное к ней тело, т. е. сообщить этому телу кинетическую энергию. Следовательно, такая пружина обладает запасом энергии. Потенциальной энергией пружины (или любого упруго деформированного тела) называют величину

Потенциальная энергия упруго деформированного тела равна работе силы упругости при переходе из данного состояния в состояние с нулевой деформацией.

Если в начальном состоянии пружина уже была деформирована, а ее удлинение было равно x 1 , тогда при переходе в новое состояние с удлинением x 2 сила упругости совершит работу, равную изменению потенциальной энергии, взятому с противоположным знаком:

Потенциальная энергия при упругой деформации - это энергия взаимодействия отдельных частей тела между собой посредством сил упругости.

Свойством консервативности наряду с силой тяжести и силой упругости обладают некоторые другие виды сил, например, сила электростатического взаимодействия между заряженными телами. Сила трения не обладает этим свойством. Работа силы трения зависит от пройденного пути. Понятие потенциальной энергии для силы трения вводить нельзя.



Понравилась статья? Поделиться с друзьями: