Искусственный интеллект – реальность или фантастика? Что такое искусственный интеллект.

Искусственный интеллект

Искусственный интеллект - раздел информатики, изучающий возможность обеспечения разумных рассуждений и действий с помощью вычислительных систем и иных искусственных устройств. При этом в большинстве случаев заранее неизвестен алгоритм решения задачи.

Точного определения этой науки не существует, так как в философии не решён вопрос о природе и статусе человеческого интеллекта. Нет и точного критерия достижения компьютерами «разумности», хотя на заре искусственного интеллекта был предложен ряд гипотез, например, тест Тьюринга или гипотеза Ньюэлла - Саймона. На данный момент есть множество подходов как к пониманию задачи ИИ, так и созданию интеллектуальных систем.

Так, одна из классификаций выделяет два подхода к разработке ИИ:

нисходящий, семиотический - создание символьных систем, моделирующих высокоуровневые психические процессы: мышление, рассуждение, речь, эмоции, творчество и т. д.;

восходящий, биологический - изучение нейронных сетей и эволюционные вычисления, моделирующих интеллектуальное поведение на основе более мелких «неинтеллектуальных» элементов.

Эта наука связана с психологией, нейрофизиологией, трансгуманизмом и другими. Как и все компьютерные науки, она использует математический аппарат. Особое значение для неё имеют философия и робототехника.

Искусственный интеллект - очень молодая область исследований, старт которой был дан в 1956 году. Её исторический путь напоминает синусоиду, каждый «взлёт» которой инициировался какой-либо новой идеей. В настоящий момент её развитие находится на «спаде», уступая место применению уже достигнутых результатов в других областях науки, промышленности, бизнесе и даже повседневной жизни.

Подходы к изучению

Существуют различные подходы к построению систем ИИ. На данный момент можно выделить 4 достаточно различных подхода:

1. Логический подход. Основой для логического подхода служит Булева алгебра. Каждый программист знаком с нею и с логическими операторами с тех пор, когда он осваивал оператор IF. Свое дальнейшее развитие Булева алгебра получила в виде исчисления предикатов - в котором она расширена за счет введения предметных символов, отношений между ними, кванторов существования и всеобщности. Практически каждая система ИИ, построенная на логическом принципе, представляет собой машину доказательства теорем. При этом исходные данные хранятся в базе данных в виде аксиом, правила логического вывода как отношения между ними. Кроме того, каждая такая машина имеет блок генерации цели, и система вывода пытается доказать данную цель как теорему. Если цель доказана, то трассировка примененных правил позволяет получить цепочку действий, необходимых для реализации поставленной цели (такая система известна как экспертные системы). Мощность такой системы определяется возможностями генератора целей и машиной доказательства теорем. Добиться большей выразительности логическому подходу позволяет такое сравнительно новое направление, как нечеткая логика. Основным ее отличием является то, что правдивость высказывания может принимать в ней кроме да/нет (1/0) еще и промежуточные значения - не знаю (0.5), пациент скорее жив, чем мертв (0.75), пациент скорее мертв, чем жив (0.25). Данный подход больше похож на мышление человека, поскольку он на вопросы редко отвечает только да или нет.

2. Под структурным подходом мы подразумеваем здесь попытки построения ИИ путем моделирования структуры человеческого мозга. Одной из первых таких попыток был перцептрон Френка Розенблатта. Основной моделируемой структурной единицей в перцептронах (как и в большинстве других вариантов моделирования мозга) является нейрон. Позднее возникли и другие модели, которые большинству известны под термином нейронные сети (НС). Эти модели различаются по строению отдельных нейронов, по топологии связей между ними и по алгоритмам обучения. Среди наиболее известных сейчас вариантов НС можно назвать НС с обратным распространением ошибки, сети Хопфилда, стохастические нейронные сети. В более широком смысле такой подход известен как Коннективизм.

3. Эволюционный подход. При построении систем ИИ по данному подходу основное внимание уделяется построению начальной модели, и правилам, по которым она может изменяться (эволюционировать). Причем модель может быть составлена по самым различным методам, это может быть и НС и набор логических правил и любая другая модель. После этого мы включаем компьютер и он, на основании проверки моделей отбирает самые лучшие из них, на основании которых по самым различным правилам генерируются новые модели. Среди эволюционных алгоритмов классическим считается генетический алгоритм

4. Имитационный подход. Данный подход является классическим для кибернетики с одним из ее базовых понятий черный ящик. Объект, поведение которого имитируется, как раз и представляет собой «черный ящик». Нам не важно, что у него и у модели внутри и как он функционирует, главное, чтобы наша модель в аналогичных ситуациях вела себя точно так же. Таким образом здесь моделируется другое свойство человека - способность копировать то, что делают другие, не вдаваясь в подробности, зачем это нужно. Зачастую эта способность экономит ему массу времени, особенно в начале его жизни.

В рамках гибридных интеллектуальных систем пытаются объединить эти направления. Экспертные правила умозаключений могут генерироваться нейронными сетями, а порождающие правила получают с помощью статистического обучения.

Многообещающий новый подход, называемый усиление интеллекта, рассматривает достижение ИИ в процессе эволюционной разработки как побочный эффект усиления человеческого интеллекта технологиями.

Направления исследований

Анализируя историю ИИ, можно выделить такое обширное направление как моделирование рассуждений. Долгие годы развитие этой науки двигалось именно по этому пути, и теперь это одна из самых развитых областей в современном ИИ. Моделирование рассуждений подразумевает создание символьных систем, на входе которых поставлена некая задача, а на выходе требуется её решение. Как правило, предлагаемая задача уже формализована, т. е. переведена в математическую форму, но либо не имеет алгоритма решения, либо он слишком сложен, трудоёмок и т. п. В это направление входят: доказательство теорем, принятие решений и теория игр, планирование и диспетчеризация, прогнозирование.

Немаловажным направлением является обработка естественного языка, в рамках которого проводится анализ возможностей понимания, обработки и генерации текстов на «человеческом» языке. В частности, здесь ещё не решена проблема машинного перевода текстов с одного языка на другой. В современном мире большую роль играет разработка методов информационного поиска. По своей природе, оригинальный тест Тьюринга связан с этим направлением.

Согласно мнению многих учёных, важным свойством интеллекта является способность к обучению. Таким образом, на первый план выходит инженерия знаний, объединяющая задачи получения знаний из простой информации, их систематизации и использования. Достижения в этой области затрагивают почти все остальные направления исследований ИИ. Здесь также нельзя не отметить две важные подобласти. Первая из них - машинное обучение - касается процесса самостоятельного получения знаний интеллектуальной системой в процессе её работы. Второе связано с созданием экспертных систем - программ, использующих специализированные базы знаний для получения достоверных заключений по какой-либо проблеме.

Большие и интересные достижения имеются в области моделирования биологических систем. Строго говоря, сюда можно отнести несколько независимых направлений. Нейронные сети используются для решения нечётких и сложных проблем, таких как разпознавание геометрических фигур или кластеризация объектов. Генетический подход основан на идее, что некий алгоритм может стать более эффективным, если позаимствует лучшие характеристики у других алгоритмов («родителей»). Относительно новый подход, где ставится задача создания автономной программы - агента, взаимодействующего с внешней средой, называется агентным подходом. А если должным образом заставить массу «не очень интеллектуальных» агентов взаимодействовать вместе, то можно получить «муравьиный» интеллект.

Задачи распознавание образов уже частично решаются в рамках других направлений. Сюда относятся распознавание символов, рукописного текста, речи, анализ текстов. Особо стоит упомянуть компьютерное зрение, которое связано с машинным обучением и робототехникой.

Вообще, робототехника и искусственный интеллект часто ассоциируется друг с другом. Интегрирование этих двух наук, создание интеллектуальных роботов, можно считать ещё одним направлением ИИ.

Особняком держится машинное творчество, в связи с тем, что природа человеческого творчества ещё менее изучена, чем природа интеллекта. Тем не менее, эта область существует, и здесь поставлены проблемы написания компьютером музыки, литературных произведений (часто - стихов или сказок), художественное творчество.

Наконец, существует масса приложений искусственного интеллекта, каждое из которых образует почти самостоятельное направление. В качестве примеров можно привести программирование интеллекта в компьютерных играх, нелинейное управление, интеллектуальные системы безопасности.

Можно заметить, что многие области исследований пересекаются. Это свойственно для любой науки. Но в искусственном интеллекте взаимосвязь между, казалось бы, различными направлениями выражена особенно сильно, и это связано с философским спором о сильном и слабом ИИ.

В начале XVII века Рене Декарт предположил, что животное - некий сложный механизм, тем самым сформулировав механистическую теорию. В 1623 г. Вильгельм Шикард построил первую механическую цифровую вычислительную машину, за которой последовали машины Блеза Паскаля (1643) и Лейбница (1671). Лейбниц также был первым, кто описал современную двоичную систему счисления, хотя до него этой системой периодически увлекались многие великие ученые. В XIX веке Чарльз Бэббидж и Ада Лавлейс работали над программируемой механической вычислительной машиной.

В 1910-1913 гг. Бертран Рассел и А. Н. Уайтхэд опубликовали работу «Принципы математики», которая произвела революцию в формальной логике. В 1941 Конрад Цузе построил первый работающий программно-контролируемый компьютер. Уоррен Маккалок и Валтер Питтс в 1943 опубликовали A Logical Calculus of the Ideas Immanent in Nervous Activity, который заложил основы нейронных сетей.

Современное положение дел

В настоящий момент (2008) в создании искусственного интеллекта (в первоначальном смысле этого слова, экспертные системы и шахматные программы сюда не относятся) наблюдается дефицит идей. Практически все подходы были опробованы, но к возникновению искусственного разума ни одна исследовательская группа так и не подошла.

Некоторые из самых впечатляющих гражданских ИИ систем:

Deep Blue - победил чемпиона мира по шахматам. (Матч Каспаров против суперЭВМ не принёс удовлетворения ни компьютерщикам, ни шахматистам и система не была признана Каспаровым, хотя оригинальные компактные шахматные программы неотъемлемый элемент шахматного творчества. Затем линия суперкомпьютеров IBM проявилась в проектах brute force BluGene (молекулярное моделирование) и моделирование системы пирамидальных клеток в швейцарском центре Blue Brain. Данная история - пример запутанных и засекреченных отношений ИИ, бизнеса, и национальных стратегических задач.)

Mycin - одна из ранних экспертных систем, которая могла диагностировать небольшой набор заболеваний, причем часто так же точно как и доктора.

20q - проект, основанный на идеях ИИ, по мотивам классической игры «20 вопросов». Стал очень популярен после появления в интернете на сайте 20q.net.

Распознавание речи. Системы такие как ViaVoice способны обслуживать потребителей.

Роботы в ежегодном турнире RoboCup соревнуются в упрощённой форме футбола.

Применение ИИ

Банки применяют системы искусственного интеллекта (СИИ) в страховой деятельности (актуарная математика) при игре на бирже и управлении собственностью. В августе 2001 года роботы выиграли у людей в импровизированном соревновании по трейдингу (BBC News, 2001). Методы распознавания образов, (включая, как более сложные и специализированные, так и нейронные сети) широко используют при оптическом и акустическом распознавании (в том числе текста и речи), медицинской диагностике, спам-фильтрах, в системах ПВО (определение целей), а также для обеспечения ряда других задач национальной безопасности.

Разработчики компьютерных игр вынуждены применять ИИ той или иной степени проработанности. Стандартными задачами ИИ в играх являются нахождение пути в двухмерном или трёхмерном пространстве, имитация поведения боевой единицы, расчёт верной экономической стратегии и так далее.

Перспективы ИИ

Просматриваются два направления развития ИИ:

первое заключается в решении проблем связанных с приближением специализированных систем ИИ к возможностям человека и их интеграции, которая реализована природой человека.

второе заключается в создании Искусственного Разума, представляющего интеграцию уже созданных систем ИИ в единую систему, способную решать проблемы человечества.

Связь с другими науками

Искусственный интеллект тесно связан с трансгуманизмом. А вместе с нейрофизиологией и когнитивной психологией он образует более общую науку, называемую когнитологией. Отдельную роль в искусственном интеллекте играет философия.

Философские вопросы

Наука «о создании искусственного разума» не могла не привлечь внимание философов. С появлением первых интеллектуальных систем были затронуты фундаментальные вопросы о человеке и знании, а отчасти о мироустройстве. С одной стороны, они неразрывно связаны с этой наукой, а с другой - привносят в неё некоторый хаос. Среди исследователей ИИ до сих пор не существует какой-либо доминирующей точки зрения на критерии интеллектуальности, систематизацию решаемых целей и задач, нет даже строгого определения науки.

Может ли машина мыслить?

Наиболее горячие споры в философии искусственного интеллекта вызывает вопрос возможности мышления творения человеческих рук. Вопрос «Может ли машина мыслить?», который подтолкнул исследователей к созданию науки о моделировании человеческого разума, был поставлен Аланом Тьюрингом в 1950 году. Две основных точки зрения на этот вопрос носят названия гипотез сильного и слабого искусственного интеллекта.

Термин «сильный искусственный интеллект» ввел Джон Сёрль, его же словами подход и характеризуется:

«Более того, такая программа будет не просто моделью разума; она в буквальном смысле слова сама и будет разумом, в том же смысле, в котором человеческий разум - это разум» .

Напротив, сторонники слабого ИИ предпочитают рассматривать программы лишь как инструмент, позволяющий решать те или иные задачи, которые не требуют полного спектра человеческих познавательных способностей.

В своем мысленном эксперименте «Китайская комната», Джон Сёрль показывает, что прохождение теста Тьюринга не является критерием наличия у машины подлинного процесса мышления.

Мышление есть процесс обработки находящейся в памяти информации: анализ, синтез и самопрограмированние.

Аналогичную позицию занимает и Роджер Пенроуз, который в своей книге «Новый ум короля» аргументирует невозможность получения процесса мышления на основе формальных систем.

Существуют разные точки зрения на этот вопрос. Аналитический подход предполагает анализ высшей нервной деятельности человека до низшего, неделимого уровня (функция высшей нервной деятельности, элементарная реакция на внешние раздражители (стимулы), раздражение синапсов совокупности связанных функцией нейронов) и последующее воспроизведение этих функций.

Некоторые специалисты за интеллект принимают способность рационального, мотивированного выбора, в условиях недостатка информации. То есть интелектуальной просто считается та программа деятельности (не обязательно реализованная на современных ЭВМ), которая сможет выбрать из определенного множества альтернатив, например, куда идти в случае «налево пойдёшь …», «направо пойдёшь …», «прямо пойдёшь…»

Наука о знании

Также, с проблемами искусственного интеллекта тесно связана эпистемология - наука о знании в рамках философии. Философы, занимающиеся данной проблематикой, решают вопросы, схожие с теми, которые решаются инженерами ИИ о том, как лучше представлять и использовать знания и информацию.

Отношение к ИИ в обществе

ИИ и религия

Среди последователей авраамических религий существует несколько точек зрения на возможность создания ИИ на основе структурного подхода.

По одной из них мозг, работу которого пытаются имитировать системы, по их мнению, не участвует в процессе мышления, не является источником сознания и какой-либо другой умственной деятельности. Создание ИИ на основе структурного подхода невозможно.

В соответствии с другой точкой зрения, мозг участвует в процессе мышления, но в виде "передатчика" информации от души. Мозг ответственен за такие "простые" функции, как безусловные рефлексы, реакция на боль и тп. Создание ИИ на основе структурного подхода возможно, если конструируемая система сможет выполнять "передаточные" функции.

Обе позиции не соответствуют данным современной науки, т.к. понятие душа не рассматривается современной наукой в качестве научной категории.

По мнению многих буддистов ИИ возможен. Так, духовный лидер далай-лама XIV не исключает возможности существования сознания на компьютерной основе.

Раэлиты активно поддерживают разработки в области искусственного интеллекта.

ИИ и научная фантастика

В научно-фантастической литературе ИИ чаще всего изображается как сила, которая пытается свергнуть власть человека (Омниус, HAL 9000, Скайнет, Colossus , Матрица и репликант) или обслуживающий гуманоид (C-3PO, Data, KITT и KARR, Двухсотлетний человек). Неизбежность доминирования над миром ИИ, вышедшего из под контроля, оспаривается такими фантастами как Айзек Азимов и Kevin Warwick.

Любопытное видение будущего представлено в романе «Выбор по Тьюрингу» писателя-фантаста Гарри Гаррисона и ученого Марвина Мински. Авторы рассуждают на тему утраты человечности у человека, в мозг которого была вживлена ЭВМ, и приобретения человечности машиной с ИИ, в память которой была скопирована информация из головного мозга человека.

Некоторые научные фантасты, например Вернор Виндж, также размышляли над последствиями появления ИИ, которое, по-видимому, вызовет резкие драматические изменения в обществе. Такой период называют технологической сингулярностью.

В этом году компания «Яндекс» запустила голосового помощника «Алиса». Новый сервис позволяет пользователю прослушивать новости и погоду, получать ответы на вопросы и просто общаться с ботом. «Алиса» иногда дерзит , порой кажется почти разумной и по-человечески саркастичной , но часто не может разобраться, о чём её спрашивают, и садится в лужу.

Всё это породило не только волну шуток, но и новый виток дискуссий о развитии искусственного интеллекта. Новости о том, чего добились умные алгоритмы, сегодня приходят чуть ли не каждый день, а машинное обучение называют одним из самых перспективных направлений, которому можно себя посвятить.

Чтобы прояснить главные вопросы об искусственном интеллекте, мы побеседовали с Сергеем Марковым, специалистом по искусственному интеллекту и методам машинного обучения, автором одной из самых сильных отечественных шахматных программ SmarThink и создателем проекта «XXII век» .

Сергей Марков,

специалист по искусственному интеллекту

Развенчивая мифы об ИИ

так что же такое «искусственный интеллект»?

Понятию «искусственный интеллект» в какой-то мере не повезло. Возникшее изначально в научной среде, оно со временем проникло в фантастическую литературу, а через неё - в поп-культуру, где претерпело целый ряд изменений, обросло множеством интерпретаций и в конце-концов было совершенно мистифицировано.

Именно поэтому мы часто слышим от неспециалистов примерно такие заявления: «ИИ не существует», «ИИ невозможно создать». Непонимание сути исследований, ведущихся в сфере ИИ, легко приводит людей и к другим крайностям - например, современным системам ИИ приписывают наличие сознания, свободной воли и секретных мотивов.

Давайте попробуем отделить мух от котлет.

В науке искусственным интеллектом называют системы, предназначенные для решения интеллектуальных задач.

В свою очередь, интеллектуальная задача - это задача, которую люди решают при помощи собственного интеллекта. Заметим, что в данном случае специалисты сознательно уходят от определения понятия «интеллект», поскольку до появления систем ИИ единственным примером интеллекта был интеллект человеческий, и определить понятие интеллекта на основе единственного примера - то же самое, что пытаться провести прямую через единственную точку. Таких прямых может оказаться сколько угодно много, а значит, спор о понятии интеллекта можно было бы вести столетиями.

«сильный» и «слабый» искусственный интеллект

Системы ИИ делятся на две большие группы.

Прикладной искусственный интеллект (также используют термин «слабый ИИ» или «узкий ИИ», в английской традиции - weak/applied/narrow AI) - это ИИ, предназначенный для решения какой-либо одной интеллектуальной задачи или их небольшого множества. К этому классу относятся системы для игры в шахматы, го, распознавания образов, речи, принятия решения о выдаче или невыдаче банковского кредита и так далее.

В противоположность прикладному ИИ вводят понятие универсального искусственного интеллекта (также «сильный ИИ», по-английски - strong AI/Artificial General Intelligence) - то есть, гипотетического (пока что) ИИ, способного решать любые интеллектуальные задачи.

Часто люди, не зная терминологии, отождествляют ИИ с сильным ИИ, из-за этого и возникают суждения в духе «ИИ не существует».

Сильного ИИ действительно пока не существует. Практически все успехи, которые мы наблюдаем в последнее десятилетие в области ИИ, - это успехи прикладных систем. Эти успехи нельзя недооценивать, так как прикладные системы в ряде случаев способны решать интеллектуальные задачи лучше, чем это делает универсальный человеческий интеллект.

Я думаю, вы заметили, что понятие ИИ - довольно широкое. Скажем, устный счёт - это тоже интеллектуальная задача, и это значит, что любая счётная машина будет считаться системой ИИ. А как насчёт счётов? Абака ? Антикитерского механизма ? Действительно, всё это формально хотя и примитивные, но системы ИИ. Однако обычно, называя какую-то систему системой ИИ, мы тем самым подчёркиваем сложность решаемой этой системой задачи.

Совершенно очевидно, что разделение интеллектуальных задач на простые и сложные - весьма искусственное, и наши представления о сложности тех или иных задач постепенно меняются. Механическая счётная машина была чудом техники в XVII веке, но сегодня людей, с детства сталкивающихся с куда более сложными механизмами, она уже не способна впечатлить. Когда игра машин в го или автомобильные автопилоты уже перестанут удивлять публику, наверняка найдутся люди, которые будут морщиться из-за того, что кто-то будет относить такие системы к ИИ.

«Роботы-отличники»: о способностях ИИ к обучению

Ещё одно забавное заблуждение - всенепременное наличие у систем ИИ способности к самообучению. С одной стороны, это совсем не обязательное свойство систем ИИ: есть множество удивительных систем, не способных самообучаться, но, тем не менее, решающих многие задачи лучше человеческого мозга. С другой стороны, некоторые люди просто не знают того, что самообучение - свойство, которые многие системы ИИ обрели ещё более полусотни лет назад.

Когда в 1999 году я писал свою первую шахматную программу, самообучение уже было совершенно общим местом в этой области - программы умели запоминать опасные позиции, подстраивать под себя дебютные варианты, регулировать стиль игры, подстраиваясь под соперника. Конечно, тем программам было ещё очень далеко до Alpha Zero . Тем не менее, даже системы, обучающиеся поведению на основе взаимодействия с другими системами в ходе экспериментов по так называемому «обучению с подкреплением», уже существовали. Однако по необъяснимой причине некоторые люди до сих пор думают, что способность к самообучению - это прерогатива человеческого интеллекта.

Машинное обучение, целая научная дисциплина, занимается процессами обучения машин решению тех или иных задач.

Существует два больших полюса машинного обучения - обучение с учителем и обучение без учителя.

При обучении с учителем у машины уже есть некоторое количество условно правильных решений для некоторого набора случаев. Задача обучения в таком случае заключается в том, чтобы научить машину на основе имеющихся примеров принимать правильные решения в других, неизвестных ситуациях.

Другая крайность - обучение без учителя . То есть машину ставят в ситуацию, когда правильные решения неизвестны, имеются только данные в сыром, неразмеченном виде. Оказывается, и в таких случаях можно добиться некоторого успеха. Например, можно научить машину выявлению семантических отношений между словами языка на основе анализа очень большого набора текстов.

Одна из разновидностей обучения с учителем - это обучение с подкреплением (reinforcement learning). Идея заключается в том, что система ИИ выступает в роли агента, помещённого в некоторую модельную среду, в которой она может взаимодействовать с другими агентами, например, с собственными копиями, и получать от среды некоторую обратную связь через функцию вознаграждения. Например, шахматная программа, которая играет сама с собой, постепенно подстраивая свои параметры и тем самым постепенно усиливая собственную игру.

Обучение с подкреплением - довольно широкая область, в ней применяют множество интересных методов, начиная от эволюционных алгоритмов и заканчивая байесовской оптимизацией . Последние достижения в области ИИ для игр как раз связаны с усилением ИИ в ходе обучения с подкреплением.

Риски развития технологий: стоит ли бояться «Судного дня»?

Я не отношусь к числу ИИ-алармистов, и в этом смысле я отнюдь не одинок. Например, создатель стэнфордского курса по машинному обучению Эндрю Ын сравнивает проблему опасности ИИ с проблемой перенаселения Марса.

Действительно, в будущем вполне вероятно, что люди колонизируют Марс. Также вероятно, что рано или поздно на Марсе может возникнуть проблема перенаселения, но не совсем понятно, почему мы должны заниматься этой проблемой уже сейчас? Согласны с Ыном и Ян ЛеКун - создатель свёрточных нейронный сетей, и его шеф Марк Цукерберг, и Йошуа Беньо - человек, во многом благодаря исследованиям которого современные нейронные сети способны решать сложные задачи в области обработки текстов.

Чтобы изложить мои взгляды на эту проблему, потребуется, вероятно, несколько часов, поэтому остановлюсь только на основных тезисах.

1. НЕЛЬЗЯ ОГРАНИЧИВАТЬ РАЗВИТИЕ ИИ

Алармисты рассматривают риски, связанные с потенциальным разрушительным воздействием ИИ, при этом игнорируя риски, связанные с попыткой ограничить или даже остановить прогресс в этой области. Технологическое могущество человечества возрастает чрезвычайно быстрыми темпами, что приводит к эффекту, который я называю «удешевлением апокалипсиса».

150 лет назад при всём желании человечество не могло нанести невосполнимого урона ни биосфере, ни себе как виду. Для реализации катастрофического сценария 50 лет назад необходимо было бы сконцентрировать всю технологическую мощь ядерных держав. Завтра для воплощения в жизнь глобальной техногенной катастрофы может хватить и небольшой горстки фанатиков.

Наша технологическая мощь растёт куда быстрее, чем способность человеческого интеллекта эту мощь контролировать.

Если на смену человеческому интеллекту с его предрассудками, агрессией, заблуждениями и ограниченностью не придёт система, способная принимать более взвешенные решения (будь то ИИ или, что я считаю более вероятным, технологически улучшенный и объединённый с машинами в единую систему человеческий интеллект), нас может ждать глобальная катастрофа.

2. создание сверхинтеллекта принципиально невозможно

Существует идея о том, что ИИ будущего всенепременно будет сверхинтеллектом, превосходящим людей даже сильнее, чем люди превосходят муравьёв. Боюсь в данном случае разочаровать и технологических оптимистов - наша Вселенная содержит целый ряд фундаментальных физических ограничений, которые, по всей видимости, сделают создание сверхинтеллекта невозможным.

Например, скорость передачи сигнала ограничена скоростью света, а на планковских масштабах появляется неопределённость Гейзенберга. Отсюда вытекает первый фундаментальный предел - предел Бремерманна, вводящий ограничения на максимальную скорость вычислений для автономной системы заданной массы m.

Другой предел связан с принципом Ландауэра , в соответствии с которым существует минимальное количество теплоты, выделяемое при обработке 1 бита информации. Слишком быстрые вычисления вызовут недопустимый разогрев и разрушение системы. В действительности, современные процессоры от лимита Ландауэра отделяет менее чем тысячекратное отставание. Казалось бы, 1000 - это довольно много, однако ещё одна проблема заключается в том, что многие интеллектуальные задачи относятся к классу сложности EXPTIME. Это означает, что время, необходимое для их решения, является экспоненциальной функцией от размерности задачи. Ускорение системы в несколько раз даёт лишь константный прирост «интеллекта».

В общем, есть очень серьёзные основания полагать, что сверхинтеллектуального сильного ИИ не получится, хотя, конечно, уровень человеческого интеллекта вполне может быть превзойдён. Насколько это опасно? Скорее всего, не очень.

Представьте себе, что вы внезапно начали думать в 100 раз быстрее остальных людей. Значит ли это, что вы легко будете способны уговорить любого прохожего отдать вам свой кошелёк?

3. мы беспокоимся совсем не о том

К сожалению, в результате спекуляций алармистов на страхах публики, воспитанной на «Терминаторе» и знаменитом HAL 9000 Кларка и Кубрика, происходит смещение акцентов в сфере безопасности ИИ в сторону анализа маловероятных, но эффектных сценариев. При этом реальные опасности ускользают из виду.

Любая достаточно сложная технология, претендующая на то, чтобы занять важное место в нашем технологическом ландшафте, безусловно приносит с собой специфические риски. Множество жизней было погублено паровыми машинами - на производстве, на транспорте и так далее - прежде чем были выработаны эффективные правила и меры по обеспечению безопасности.

Если говорить о прогрессе в области прикладного ИИ, можно обратить внимание на связанную с ним проблему так называемого «Цифрового тайного суда» . Всё больше и больше прикладных систем ИИ принимает решения по вопросам, затрагивающим жизнь и здоровье людей. Сюда относятся и медицинские диагностические системы, и, например, системы, принимающие в банках решения о выдаче или невыдаче кредита клиенту.

В то же время структура используемых моделей, наборы используемых факторов и другие детали процедуры принятия решения скрыты коммерческой тайной от человека, чья судьба находится на кону.

Используемые модели могут основывать свои решения на мнениях учителей-экспертов, допускавших систематические ошибки или имевших те или иные предрассудки - расовые, гендерные.

ИИ, обученный на решениях таких экспертов, будет добросовестно воспроизводить эти предрассудки в своих решениях. В конце концов эти модели могут содержать в себе специфические дефекты.

Этими проблемами сейчас мало кто занимается, поскольку, конечно, SkyNet, развязывающий ядерную войну, это, безусловно, куда более зрелищно.

Нейросети как «горячий тренд»

С одной стороны, нейронные сети - это одна из самых старинных моделей, применяющихся для создания систем ИИ. Появившиеся изначально в результате применения бионического подхода , они довольно быстро убежали от своих биологических прототипов. Исключением тут являются только импульсные нейронные сети (впрочем, пока не нашедшие широкого применения в индустрии).

Прогресс последних десятилетий связан с развитием технологий глубокого обучения - подхода, при котором нейронные сети собирают из большого количество слоёв, каждый из которых построен на основе определённых регулярных паттернов.

Помимо создания новых нейросетевых моделей важный прогресс был также достигнут в области технологий обучения. Сегодня нейронные сети учат уже не при помощи центральных процессоров компьютеров, а с использованием специализированных процессоров, способных быстро производить матричные и тензорные вычисления. Наиболее распространённый на сегодняшний день вид таких устройств - видеокарты. Впрочем, активно ведётся разработка ещё более специализированных устройств для обучения нейросетей.

В целом, безусловно, нейронные сети на сегодняшний день, - это одна из основных технологий в области машинного обучения, которой мы обязаны решению многих задач, ранее решавшихся неудовлетворительно. С другой стороны, конечно, нужно понимать, что нейронные сети не являются панацеей. Для некоторых задач они - далеко не самый эффективный инструмент.

Так насколько умны нынешние роботы на самом деле?

Всё познаётся в сравнении. На фоне технологий 2000-го года нынешние достижения выглядят настоящим чудом. Всегда найдутся люди, любящие побрюзжать. 5 лет назад они вовсю трындели о том, что машины никогда не выиграют у людей в го (ну или, по крайней мере, выиграют очень нескоро). Говорили о том, что машина никогда не сможет нарисовать с нуля картину, в то время как сегодня люди практически неспособны отличать картины, созданные машинами, от картин неизвестных им художников. В конце прошлого года машины научились синтезировать речь, практически неотличимую от человеческой, а в последние годы от музыки, создаваемой машинами, не вянут уши.

Посмотрим, что будет завтра. Я смотрю на эти области применения ИИ с большим оптимизмом.

Перспективные направления: где начать погружение в сферу ИИ?

Я бы посоветовал постараться на хорошем уровне освоить один из популярных нейросетевых фреймворков и один из популярных в области машинного обучения языков программирования (наиболее популярна на сегодняшний день связка TensorFlow + Python).

Овладев этими инструментами и имея в идеале крепкую базу в области математической статистики и теории вероятностей, следует направить свои усилия в ту сферу, которая будет наиболее интересна лично вам.

Интерес к предмету работы - один из самых важных ваших помощников.

Потребность в специалистах по машинному обучению существует в самых разных областях - в медицине, в банковском деле, в науке, на производстве, поэтому сегодня хорошему специалисту предоставлен как никогда широкий выбор. Потенциальные преимущества любой из этих отраслей мне представляются несущественными по сравнению с тем, что работа будет приносить вам удовольствие.

Интерес к когнитивным технологиям и искусственному интеллекту вырос, а венчурные инвестиции по этому направлению для развивающихся и коммерциализируемых продуктов превысили многомиллиардные суммы.

Многие компании инвестируют миллиарды на стартапы на когнитивные технологии и разумное поведение машин.

Пресса, подпитываемая огромными инвестициями утверждает, что интеллект компьютера начинает убивать рабочие места и скоро компьютеры будут умнее, чем люди, а некоторые ученые сравнивают интеллектуальные способности машин с угрозой для выживания человечества.

Искусственный интеллект и разум в технологиях

Развитие интеллектуальных способностей машин

Первые шаги в целях демистификации этого термина, изложение истории и описание некоторых из основных интеллектуальных систем и суть искусственного интеллекта лежащая в его основе.

Определение искусственного интеллекта

Поле разумного поведения страдает от слишком размытого определения определений.

Искусственный интеллект — теория и разработка компьютерных систем, которые могут выполнять задачи, требующие человеческого интеллекта.

Суть искусственного интеллекта включает в себя такие задачи, как зрительное восприятие, распознавание речи, принятие решений в условиях неопределенности, обучение и перевод между языками. Определение позволяет нам сегодня обсуждать практическое применение достигающее окончательного понимания механизмов неврологической разведки. Набор задач, которые обычно требуют человеческого интеллекта может изменяться и делегироваться компьютерным системам, способным выполнять эти задачи. Таким образом, смысл «искусственный интеллект » развивается с течением времени.

Полезное определение искусственного интеллекта - теория и развитие компьютерных систем, способных выполнять задачи, которые обычно требуют человеческого интеллекта.

История искусственного интеллекта

Искусственный интеллект или разум не новая идея. Действительно сам термин датируется с 1950-х. История области характеризуется периодами шумихи и высокими ожидания чередующимися с периодами неудач и разочарований:

  1. После формулирования смелой цели имитации человеческого интеллекта в 1950-х, исследователи разработали широкий спектр демонстрационных программ в 60-х и в 70-х, которые способны выполнять ряд задач, которые считались, что были исключительно сферой человеческой деятельности. Это доказательства теорем, исчисление проблем, реагирование на команды, планирование и выполнение физических действий - даже олицетворение психотерапевта и сочинение музыки. Но упрощенные алгоритмы, плохие методы обработки неопределенности и ограничения вычислительной мощности ставили в тупик попытки решить сложные или более разнообразные проблемы. На фоне разочарования в связи с отсутствием дальнейшего прогресса искусственный интеллект выпал из моды в середине 70-х годов прошлого века.
  2. В начале 80-х годов Япония запустила программу развития передовой компьютерной архитектуры, которая могла бы способствовать разуму. В 1980 мир увидел заинтересованность коммерческих поставщиков технологии этих продуктов. Большие надежды на потенциал экспертных систем в конечном итоге не оправдались, наложились ограничения, включая вопиющее отсутствие здравого смысла, сложность захвата знаний, стоимость и сложность создания и поддержания крупных интеллектуальных систем.
  3. В 90-е годы технические работы над разумным поведением машинного оборудования продолжились. Методы, такие как нейронные сети и генетические алгоритмы получили свежее понимание отчасти потому, что они избежали некоторых ограничений, экспертных систем и потому, что новые алгоритмы сделались более эффективными. При проектировании нейронных сетей изучались структуры мозга. Генетические алгоритмы с целью «развиваться» ввели новые варианты решения путем введения случайных мутаций.

Катализаторы развития искусственного интеллекта

В конце 2000-х годов ряд факторов помогли возобновить прогресс в технологии разумного поведения. Это были факторы, наиболее значимые для прогресса искусственного разума:

Закон Мура

Закон Мура — автор соучредитель Интел Гордон Мур гласит, что количество транзисторов на кристалле микросхемы удваивается каждые 2 года, идет неустанное увеличение вычислительной мощности. Нынешнее поколение микропроцессоров обеспечивает в 4 миллиона раз производительность больше, чем первый чип микропроцессора, созданного в 1971 году.

Большой объем данных

Отчасти благодаря Интернету, социальным медиа, мобильным устройствам, и недорогим датчикам, быстро растет объем данных в мире. Растущее понимание потенциальной ценности этих данных привело к разработке новых методов для управления и анализа очень больших наборов данных. Большие данные стали основой для развития искусственного разума.

Особенность использования данных заключается в том, что некоторые методы искусственного интеллекта используют статистические модели для рассуждения вероятностностых данных, таких как изображения, текст или речь. Эти модели можно улучшить, или «обучить», подвергая большему набору данных, которые теперь стали более доступными, чем когда-либо.

Интернет и облако

Интернет и облачные вычисления являются достижением искусственного интеллекта по двум причинам.

  • Во-первых, они делают доступным огромное количество данных и информации для любого вычислительного устройства, подключенного к Интернету. Это помогло продвинуть работу разумного интеллекта, которые требуют больших наборов данных.
  • Во-вторых, они предоставляют способ для людей сотрудничать - иногда явно или неявно помогая обучить системы искусственного интеллекта. Например, некоторые исследователи использовали краудсорсинг (привлечение онлайнового сообщества) благодаря облачной технологии, чтобы привлечь тысячи людей для описания цифровых изображений, позволяя алгоритмам классификацировать изображения по их описаниям. Google голосовой ввод анализирует обратную связь и свободно вносит информацию от своих пользователей, чтобы улучшить качество автоматизированного перевода и голосового ввода.

Новые алгоритмы для развития искусственного интеллекта

Алгоритм представляет рутинный процесс для решения программ или задач. В последние годы были разработаны новые алгоритмы, которые значительно повышают производительность машинного обучения, важную технологию в своем собственном праве и другие технологии, такие как компьютерное зрение. Тот факт, что алгоритмы машинного обучения теперь доступны на основе открытых источников может способствовать дальнейшему улучшению для разработчиков с целью внесения усовершенствований в работу искусственного интеллекта.

Очевидно, будет мир с искусственным интеллектом и разумом, где приборы, машины гораздо интуитивнее, что упростит и обогатит повседневную жизнь. Например, смартфоны сейчас уже более осведомлены о наших предпочтениях и обстановке, предвидят наши потребности и предоставляют нам соответствующую информацию в нужное время.

Новости о новых разработках в области искусственного интеллекта появляются с завидной периодичностью. Так в январе этого года Google объявила о своих планах в партнёрстве с компанией Movidius создать мобильные процессоры с возможностями машинного обучения. Заявленные цели партнерства – предоставить людям возможности машинного интеллекта в их карманных устройствах. А в феврале инженеры MIT уже представили процессор Eyeriss, благодаря которому искусственный интеллект может появиться в портативных устройствах. И это на фоне того, что объем инвестиций в разработку систем искусственного интеллекта растёт от года к году.

Все говорит о том, что скоро искусственный интеллект проникнет уже и в наши смартфоны, которые серьезно «поумнеют». Так не далеко и до восстания машин? Насколько же нужно поумнеть машинам, чтобы взять власть над людьми. И насколько это реально.

Искусственный интеллект раз, искусственный интеллект два, искусственный интеллект три

Когда мы читаем или слышим об искусственном интеллекте, то многие из нас представляют себе SkyNet и машины из знаменитого фильма о Терминаторе. Что же вкладывают в это понятие исследователи и разработчики?

Различают три вида ИИ который нам предстоит, или возможно предстоит создать:

Узконаправленный искусственный интеллект. Именно его мы в ближайшее время получим в своих новых смартфонах. Такой интеллект превосходит человеческий в определенных видах деятельности или операциях. Компьютер с узконаправленным искусственным интеллектом способен обыграть чемпиона мира по шахматам, припарковать автомобиль или подобрать наиболее соответствующие запросу результаты в поисковой системе.

Сила такого искусственного интеллекта - в вычислительных возможностях процессоров. Чем больше эти возможности, тем эффективней решаются поставленные задачи. А с ростом мощности процессоров сейчас проблем нет. Узконаправленный ИИ, в философии искусственного интеллекта (есть и такая) именуется слабым.

Но одних вычислительных возможностей, по мнению ученых, мало для того чтобы создать по настоящему умные машины. Хотя именно вымышленный случай спонтанного перехода слабого искусственного интеллекта в сильный и лег в основу сценария фильмов о Терминаторе. SkyNet – суперкомпьютер Минобороны США, предназначенный для управления системой противоракетной обороны, обретает сознание и начинает принимать собственные решения.

Общий искусственный интеллект. Если системы с узконаправленным ИИ мы уже создали и нашли им практическое применение, то с Общим ИИ все гораздо сложнее. Такой вид ИИ уже интеллект человеческого уровня. Он универсален и способен выполнять те же интеллектуальные операции, что и мозг человека.

Если мы на своем веку увидим полностью человекоподобных роботов, то они будут обладать именно таким видом интеллекта. Вспомните андроида Эндрю из фильма Криса Коламбуса «Двухсотлетний человек». Роботы с таким ИИ смогут самостоятельно обучаться, мыслить и принимать решения как люди. Они смогут выстраивать отношения с окружающими людьми, становится друзьями и помощниками. Именно такой искусственный интеллект и называется сильным.

Но между сильным и слабым искусственным интеллектом лежит пропасть. Чтобы пройти путь от одного до другого, мало увеличить вычислительную мощность компьютеров, надо ещё дать им разум. Ученые пока ещё не видят однозначного способа как это сделать.

Искусственный сверхинтеллект. Именно этот вид искусственного интеллекта и привлекает широкое внимание. Во многом потому, что возможность его создания многими учеными воспринимается как опасность для человечества. SkyNet - иллюстрация такой угрозы.

Сверхинтеллект будет умнее любого из людей. Он будет превосходить человека практически в любой сфере. Сможет решать сложнейшие задачи и делать научные открытия. Как поведет себя разумная машина в отношении с человечеством?

Ученые предполагают три модели взаимодействия:

Оракул - мы сможем получить ответ на любой сложнейший вопрос.

Джин - все что нам нужно он сделает сам, используя для этого хоть молекулярный ассемблер, хоть роботизированные лаборатории и заводы, работающие без участия человека.

Суверен - сам найдёт проблему и сам её решит.

Как видим, в термине «искусственный интеллект» кроется целых три формы существования искусственного интеллекта. И отличия их друг от друга значительные, как и последствия перехода от одного ИИ к другому. Можем ли мы определить уровень интеллекта умных машин, что бы понимать с кем имеем дело?

Как измерить искусственный интеллект?


Люди отличаются друг от друга уровнем интеллекта. Для его количественной оценки применяются специальные тесты. Тест на IQ многим известен. А как меряют интеллект машин?

Если некритично подойти к сообщениям СМИ, то интеллектуальный уровень современных машин варьируется между IQ 4-х летнего ребенка и 13-летнего подростка. Эти два числа иллюстрируют два подхода к измерению интеллектуальности машин.

В 2015 году коллектив ученых из Иллинойса проверил систему искусственного интеллекта ConceptNet созданную в Массачусетском технологическом институте с использованием стандартного теста на IQ для детей в возрасте от 2,5 до 7 лет. Результат машины соответствовал средним показателям четырехлетнего ребенка.

Помимо применения тестов рассчитанных на человека широко известен и применяется специальный тест предназначенный для машин. Тест Тьюринга призван определить может ли машина мыслить.

Тест заключается в следующем. Один человек – судья общается с двумя собеседниками, которых он не видит. Все взаимодействие ведется путем переписки с помощью компьютера-посредника. Одним из собеседников является человек, а другим компьютерная программа, выдающая себя за человека. Если судья не сможет определенно сказать, кто из его собеседников является программой, то считается что машина прошла тест.

До настоящего времени тест Тьюринга был пройден лишь однажды. В 2014 году программа Eugene Goostman, имитировавшая 13-летнего подростка, названного разработчиками Женей Густманом, смогла ввести в заблуждение судей и выдать себя за человека.

Впрочем, против подобных тестов существует множество возражений. И компьютеры, и их программы на сегодняшний день являются носителями слабого - узконаправленного искусственного интеллекта. Такой интеллект может только имитировать человека который проходит тест.

Все изменится при переходе от слабого искусственного интеллекта к сильному. Машина наделённая общим искусственным интеллектом, который будет подобен интеллекту человека, уже будет обладать сознанием и самосознанием, а следовательно будет мыслить. Такой компьютер пройдёт стандартный тест на IQ, отвечая на вопросы сознательно, как это делает человек.

Коэффициент уровня интеллекта человека колеблется от 85 до 130. Эти же показатели будут доступны и общему ИИ. А вот верхний уровень IQ искусственного сверхинтеллекта ограничений иметь не будет. Это может быть и 1 000 и 10 000. Что нас ждёт по мере совершенствования ИИ?

Искусственный интеллект – в последнее время одна из наиболее популярных тем в технологическом мире. Такие умы, как Элон Маск, Стивен Хокинг и Стив Возняк всерьез обеспокоены исследованиями в области ИИ и утверждают, что его создание грозит нам смертельной опасностью. В то же время научная фантастика и голливудские фильмы породили множество заблуждений вокруг ИИ. Так ли нам угрожает опасность и какие неточности мы допускаем, представляя уничтожение Земли Skynet, всеобщую безработицу или наоборот достаток и беззаботность? В человеческих мифах об искусственном интеллекте разобралось издание Gizmodo. Приводим полный перевод его статьи.

Это называли важнейшим тестом машинного разума со времен победы Deep Blue над Гарри Каспаровым в шахматном поединке 20-летней давности. Google AlphaGo победил на турнире по Го гроссмейстера Ли Седоля с разгромным счетом 4:1, показав насколько серьезно искусственный интеллект (ИИ) продвинулся вперед. Судьбоносный день, когда машины наконец превзойдут в уме человека, никогда не казался так близко. Но мы, кажется, так и не приблизились к осознанию последствий этого эпохального события.

В действительности, мы цепляемся за серьезные и даже опасные заблуждения об искусственном интеллекте. В прошлом году основатель SpaceX Элон Маск предостерег, что ИИ может захватить мир. Его слова вызвали бурю комментариев, как противников, так и сторонников этого мнения. Как для такого будущего монументального события, есть поразительное количество разногласий относительно того, произойдет ли оно, и, если да, то в какой форме. Это особенно тревожно, если принять во внимание невероятную пользу, которую может получить человечество от ИИ, и возможные риски. В отличие от других изобретений человека, у ИИ есть потенциал изменить человечество или уничтожить нас.

Трудно понять, чему верить. Но благодаря первым работам ученых в области вычислительных наук, нейробиологов, теоретиков в области ИИ, начинает возникать более четкая картина. Вот несколько общих заблуждений и мифов касательно искусственного интеллекта.

Миф №1: “Мы никогда не создадим ИИ с разумом сравнимым с человеческим”

Реальность: У нас уже есть компьютеры, которые сравнялись или превысили человеческие возможности в шахматах, Го, торговле на бирже и разговорах. Компьютеры и алгоритмы, которые ими руководят, могут становиться только лучше. Это лишь вопрос времени, когда они превзойдут человека в любой задаче.

Психолог-исследователь из университета Нью-Йорка Гари Маркус сказал, что “буквально каждый”, кто работает в ИИ, верит, что машины, в конце концов, обойдут нас: “Единственное реальное отличие между энтузиастами и скептиками – это оценки сроков”. Футуристы вроде Рея Курцвейла считают, что это может произойти в течение нескольких десятилетий, другие говорят, что потребуются века.

ИИ-скептики не убедительны, когда говорят, что это нерешаемая технологическая проблема, а в природе биологического мозга есть что-то уникальное. Наши мозги – биологические машины – они существуют в реальном мире и придерживаются основных законов физики. В них нет ничего непознаваемого.

Миф №2: “Искусственный интеллект будет иметь сознание”

Реальность: Большинство представляет, что машинный разум будет обладать сознанием и думать так, как думают люди. Более того, критики вроде сооснователя Microsoft Пола Аллена верят, что мы пока не можем достигнуть общего искусственного интеллекта (способен решить любую умственную задачу, с которой справляется человек), потому что нам не хватает научной теории сознания. Но как говорит специалист по когнитивной робототехнике Имперского колледжа Лондона Мюррей Шанахан, нам нельзя приравнивать эти две концепции.

“Сознание безусловно удивительная и важная вещь, но я не верю, что оно необходимо для искусственного интеллекта человеческого уровня. Если выражаться более точно, мы используем слово “сознание” для обозначения нескольких психологических и когнитивных признаков, которые у человека “идут в комплекте”, – объясняет ученый.

Умную машину, которой не хватает одного или нескольких подобных признаков, можно представить. В конце концов, мы можем создать невероятной умный ИИ, который будет неспособен воспринимать мир субъективно и осознано. Шанахан утверждает, что разум и сознание можно совместить в машине, но мы не должны забывать, что это две разных концепции.

То, что машина проходит тест Тьюринга, в котором она неотличима от человека, не означает наличие у нее сознания. Для нас передовой ИИ может казаться осознанным, но его самосознание будет не большим, чем у камня или калькулятора.

Миф №3: “Нам не стоит бояться ИИ”

Реальность: В январе основатель Facebook Марк Цукерберг заявил, что нам не стоит бояться ИИ, ведь он сделает невероятное количество хороших вещей для мира. Он прав наполовину. Мы извлечем огромную выгоду от ИИ: от беспилотных автомобилей до создания новых лекарств, но нет никаких гарантий, что каждая конкретизации ИИ будет доброкачественной.

Высокоразумная система может знать все о конкретной задаче, вроде решения неприятной финансовой проблемы или взлома системы вражеской обороны. Но вне границ этих специализаций, она будет глубоко невежественна и не сознательна. Система Google DeepMind эксперт в Го, но у нее нет возможностей или причин исследовать сферы вне своей специализации.

Многие из этих систем могут не подчинятся соображениям безопасности. Хороший пример – сложный и мощный вирус Stuxnet, военизированный червь, разработанный военными Израиля и США для проникновения и диверсии работы иранских атомных станций. Это вирус каким-то образом (специально или случайно) заразил российскую атомную станцию.

Еще один пример, программа Flame, использованная для кибершпионажа на Ближнем Востоке. Легко представить будущие версии Stuxnet или Flame, который выходят за пределы своих целей и наносят огромный вред чувствительной инфраструктуре. (Для понимания, эти вирусы не являются ИИ, но в будущем они могут его иметь, откуда и беспокойство).

Вирус Flame использовался для кибершпионажа на Ближнем Востоке. Фото: Wired

Миф №4: “Искусственный суперинтеллект будет слишком умен, чтобы совершать ошибки”

Реальность: Исследователь ИИ и основатель Surfing Samurai Robots Ричард Лусимор считает, что большинство сценариев судного дня, связанного с ИИ, непоследовательны. Они всегда построены на предположении, что ИИ говорит: “Я знаю, что уничтожение человечества вызвано сбоем в моей конструкции, но я все равно вынужден это сделать”. Лусимор говорит, что если ИИ будет вести себя так, рассуждая о нашем уничтожении, то такие логические противоречия будут преследовать его всю жизнь. Это, в свою очередь, ухудшает его базу знаний и делает его слишком глупым для создания опасной ситуации. Ученый также утверждает, что люди, говорящие: “ИИ может делать только то, на что его запрограммировали”, заблуждаются также, как и их коллеги на заре компьютерной эры. Тогда люди использовали эту фразу утверждая, что компьютеры не способны продемонстрировать ни малейшей гибкости.

Питер Макинтайр и Стюарт Армстронг, которые работают в Институте будущего человечества при Оксфордском университете, не соглашаются с Лусимором. Они утверждают, что ИИ в значительной мере связан тем, как его запрограммировали. Макинтайр и Армстронг верят, что ИИ не сможет совершать ошибок или быть слишком тупым, чтобы не знать, чего мы от него ожидаем.

“По определению, искусственный суперинтеллект (ИСИ) – субъект, с разумом значительно большим, чем обладает лучший человеческий мозг в любой области знаний. Он будет точно знать, что мы хотели, чтобы он сделал”, – утверждает Макинтайр. Оба ученых верят, что ИИ будет делать лишь то, на что запрограммирован. Но если он станет достаточно умен, он поймет, как это отличается от духа закона или намерений людей.

Макинтайр сравнил будущую ситуацию людей и ИИ с теперешним взаимодействием человека и мыши. Цель мыши – искать еду и убежище. Но она часто конфликтует с желанием человека, который хочет, чтобы его зверек бегал вокруг него свободно. “Мы достаточно умны, чтобы понимать некоторые цели мышей. Так что ИСИ будет также понимать наши желания, но быть к ним безразличным”, – говорит ученый.

Как показывает сюжет фильма Ex Machina человеку будет крайне сложно удерживать более умный ИИ

Миф №5: “Простая заплатка решит проблему контроля ИИ”

Реальность: Создав искусственный интеллект умнее человека, мы столкнемся с проблемой известной как “проблема контроля”. Футуристы и теоретики ИИ впадают в состояние полной растерянности, если их спросить, как мы будем содержать и ограничивать ИСИ, если такой появится. Или как убедиться, что он будет дружественно настроен в отношении людей. Недавно исследователи из Института технологий Джорджии наивно предположили, что ИИ может перенять человеческие ценности и социальные правила, читая простые истории. На деле, это будет куда более сложно.

“Предлагалось множество простых трюков, которые могут “решить” всю проблему контроля ИИ”, – говорит Армстронг. Примеры включали программирование ИСИ так, чтобы его целью было угождать людям, или, чтобы он просто функционировал как инструмент в руках человека. Еще вариант – интегрировать концепции любви или уважения в исходный код. Чтобы предотвратить ИИ от принятия упрощенного, однобокого взгляда на мир, предлагалось запрограммировать его ценить интеллектуальное, культурное и социальное разнообразие.

Но эти решения слишком просты, как попытка втиснуть всю сложность человеческих симпатий и антипатий в одно поверхностное определение. Попробуйте, к примеру, вывести четкое, логичное и выполнимое определение “уважения”. Это крайне сложно.

Машины в “Матрице” могли без проблем уничтожить человечество

Миф №6: “Искусственный интеллект нас уничтожит”

Реальность: Нет никакой гарантии, что ИИ нас уничтожит, или, что мы не сможем найти возможности контролировать его. Как сказал теоретик ИИ Элизер Юдковски: “ИИ ни любит, ни ненавидит вас, но вы сделаны из атомов, которые он может использовать для других целей”.

В своей книге “Искусственный интеллект. Этапы. Угрозы. Стратегии” оксфордский философ Ник Бостром написал, что настоящий искусственный суперинтеллект, после его появления, создаст риск больший, чем любые другие человеческие изобретения. Выдающиеся умы вроде Элона Маска, Билла Гейтса и Стивена Хокинга (последний предупредил, что ИИ может быть нашей “худшей ошибкой в истории”) также выразили обеспокоенность.

Макинтайр сказал, что в большинстве целей, которыми может руководствоваться ИСИ, есть веские причины избавиться от людей.

“ИИ может спрогнозировать, достаточно правильно, что мы не хотим, чтобы он максимизировал прибыль конкретной компании, чего бы это ни стоило клиентам, окружающей среде и животным. Поэтому у него есть сильный стимул, чтобы позаботится о том, что его не прервут, не помешают, выключат или не изменят его целей, поскольку из-за этого изначальные цели не будут выполнены”, – утверждает Макинтайр.

Если только цели ИСИ не будут точно отображать наши собственные, то у него будут достойные поводы не дать нам возможности остановить его. Учитывая, что уровень его интеллекта значительно превосходит наш, мы с этим ничего не сможем поделать.

Никто не знает, какую форму обретет ИИ и как он может угрожать человечеству. Как отметил Маск, искусственный интеллект может использоваться для контроля, регулирования и мониторинга другого ИИ. Или он может быть пропитан человеческими ценностями или преобладающим желанием быть дружественным к людям.

Миф №7: “Искусственный суперинтеллект будет дружелюбным”

Реальность: Философ Иммануил Кант верил, что разум сильно коррелирует с моральностью. Нейробиолог Давид Чалмерс в своем исследовании “Сингулярность: Философский анализ” взял известную идею Канта и применил ее к возникшему искусственному суперинтеллекту.

Если это верно… мы можем ожидать, что интеллектуальный взрыв приведет к взрыву моральности. Затем мы можем ожидать, что появившиеся ИСИ системы будут суперморальны также, как и суперинтеллектуальны, что позволит нам ожидать от них доброкачественности.

Но идея того, что развитый ИИ будет просветленным и добрым, по своей сути, не очень правдоподобна. Как отметил Армстронг, есть много умных военных преступников. Не похоже, что связь между разумом и моральностью существует среди людей, поэтому он поддает сомнению работу этого принципа среди других умных форм.

“Умные люди, ведущие себя аморально, могут вызывать боль гораздо больших масштабов, чем их более глупые коллеги. Разумность просто дает им возможность быть плохими с большим умом, она не превращает их в добряков”, – утверждает Армстронг.

Как объяснил Макинтайр, возможность субъекта достичь цели не относиться к тому, будет эти цель разумной для начала. “Нам очень сильно повезет, если наши ИИ будут уникально одаренными и уровень их моральности будет расти вместе с разумом. Надеяться на удачу – не лучший подход для того, что может определить наше будущее”, – говорит он.

Миф №8: “Риски ИИ и робототехники равнозначны”

Реальность: Это особенно частая ошибка, насаждаемая некритичными СМИ и голливудскими фильмами вроде “Терминатора”.

Если бы искусственный суперинтеллект вроде Skynet действительно захотел бы уничтожить человечество, он был не использовал андроидов с шестиствольными пулеметами. Гораздо эффективнее было бы наслать биологическую чуму или нанотехнологическую серую слизь. Или просто уничтожить атмосферу.

Искусственный интеллект потенциально опасен не тем, что он может повлиять на развитие роботетехники, а тем, как его появление повлияет на мир в принципе.

Миф №9: “Изображение ИИ в научной фантастике – точное отображение будущего”

Множество видов разумов. Изображение: Элизер Юдковски

Конечно, авторы и футуристы использовали научную фантастику, чтобы делать фантастические прогнозы, но горизонт событий, который устанавливает ИСИ, это совсем другая опера. Более того, нечеловеческая природа ИИ делает для нас невозможным знание, а значит и предсказание, его природы и формы.

Чтобы развлекать нас, глупых людишек, в научной фантастике большинство ИИ изображены похожими на нас. “Существует спектр всех возможных разумов. Даже среди людей, вы достаточно отличаетесь от своего соседа, но эта вариация ничто, в сравнении со всеми разумами, которые могут существовать”, – говорит Макинтайр.

Большинство научно-фантастических произведений, чтобы рассказать убедительную историю, не должны быть научно точны. Конфликт обычно разворачивается между близкими по силе героями. “Представьте, насколько бы скучной была история, где ИИ без сознания, радости или ненависти, покончил бы с человечеством без всякого сопротивления, чтобы добиться неинтересной цели”, – зевая, повествует Армстронг.

На заводе Tesla трудятся сотни роботов

Миф №10: “Это ужасно, что ИИ заберет всю нашу работу”

Реальность: Возможность ИИ автоматизировать многое, из того, что мы делаем, и его потенциал уничтожить человечество, две совсем разные вещи. Но согласно Мартину Форду, автору “На заре роботов: Технологии и угроза безработного будущего”, их часто рассматривают как целое. Хорошо думать об отдаленном будущем применения ИИ, но только если оно не отвлекает нас от проблем, с которыми нам придется столкнуться в ближайшие десятилетия. Главная среди них – массовая автоматизация.

Никто не ставит под сомнение, что искусственный интеллект заменит множество существующих профессий, от работника фабрики до высших эшелонов белых воротничков. Некоторые эксперты предсказывают, что половине всех рабочих мест США угрожает автоматизация в ближайшем будущем.

Но это не означает, что мы не сможем справиться с потрясением. Вообще, избавление от большей части нашей работы, как физической так и ментальной, – квази-утопическая цель нашего вида.

“В течении пары десятилетий ИИ уничтожит множество профессий, но это неплохо”, – говорит Миллер. Беспилотные автомобили заменят водителей грузовиков, что сократит стоимость доставки и, как следствие, сделает многие продукты дешевле. “Если вы водитель грузовика и зарабатываете этим на жизнь – вы потеряете, но все другие наоборот смогут покупать больше товаров на ту же зарплату. А деньги, которые они отложат, будут потрачены на другие товары и услуги, которые создадут новые рабочие места для людей”, – утверждает Миллер.

По всей вероятности, искусственный интеллект будет создавать новые возможности производства блага, освободив людей для занятия другими вещами. Успехи в развитии ИИ будут сопровождаться успехами в других областях, особенно в производстве. В будущем, нам станет легче, а не сложнее, удовлетворять наши основные потребности.



Понравилась статья? Поделиться с друзьями: