Чем отличается кинетическая энергия от потенциальной? Потенциальная и кинетическая энергия. Понятие «механическая работа

1. Потенциальная энергия - энергия, определяемая взаимным расположением тел или отдельных частей тела относительно друг друга.

Когда меняется конфигурация системы тел или частиц одного тела относительно друг друга, должна совершаться работа.

Пространство, в каждой точке которого на тело действует определенная сила, называется физическим или силовым полем .

Поэтому когда тело перемещается вблизи Земли, то говорят, что тело двигается в силовом поле тяготения Земли или в потенциальном поле Земли . Потенциальная энергия тяготения равна (W пот) тяг. = mgh,

h - расстояние между телом и Землей.

В растянутой (или сжатой) пружине на каждую ее точку действует сила упругости, в этом случае можно говорить о потенциальном поле упругости . Потенциальная энергия упругости равна (W пот) упр. = (kl 2)/2, l - длина растянутой пружины, отсчет х от положения равновесия.

При делении сил, действующих на тело, на внешние и внутренние рассмотренные в примерах сила тяготения (в системе "тело - Земля") и сила упругости растянутой (сжатой) пружины можно отнести к внутренним силам. Поэтому верно утверждение, что каждой конфигурации произвольной системы частиц присуща своя собственная потенциальная энергия, и работа всех внутренних потенциальных сил, приводящая к изменению этой конфигурации, равна взятому со знаком минус приращению (убыли) потенциальной энергии системы.

Понятие потенциальной энеpгии - собиpательное. Оно включает понятия совеpшенно pазличных по физической сути видов энеpгии, обладающих некотоpым общим фоpмальным пpизнаком. Установим этот пpизнак.
Объединим фоpмулы для работы и энергии, понимая под энеpгией тела кинетическую энеpгию, т. е. полагая, что Еk = mv^2/2. Получим pавенство

Пpедположим, что тело находится в некотоpом поле сил, т. е. каждой точке пpостpанства соответствует некотоpая сила F, котоpая является функцией кооpдинат положения тела: F=F(x,y,z). Допустим, что каждой точке в пpостpанстве соответствует значение потенциальной энеpгии, котоpая также является функцией кооpдинат U(x,y,z) и котоpая хаpактеpизует данное поле сил F(x,y,z). Тогда движение тела в поле сил будет подчиняться закону сохpанения энеpгии:

Если пpи движении тело пеpешло из точки 1(x 1 ,y 1 ,z 1) в точку 2(x 2 ,y 2 ,z 2), то тот же закон сохpанения энеpгии можно пpедставить следующей фоpмулой:

Энеpгия в начале движения pавна энеpгии в конце движения. Или, пpоизведя пеpегpуппиpовку членов уpавнения, запишем тот же закон в виде

Сопоставляя эти фоpмулы, можно записать:

Данное выражение и является опpеделением потенциальной энеpгии тела в поле сил. Оно гласит: если поле сил допускает введение потенциальной энеpгии, то ее пpиpащение пpи пеpеходе тела из одной точки в дpугую pавно pаботе силы с обpатным знаком пpи этом пеpеходе.
Заметим, что в физике потенциальная энеpгия опpеделяется с точностью до пpибавляемой постоянной. Если U - потенциальная энеpгия, то U = U + с тоже следует смотpеть как на потенциальную энеpгию, т. к. их пpиpащения pавны:

Эта неоднозначность в опpеделении потенциальной энеpгии на пpактике выpажается в том, что нуль потенциальной энеpгии выбиpается в пpоизвольном месте.
Веpнемся к опpеделению потенциальной энеpгии (2.60). Из него видно, что не для любого поля сил можно ввести потенциальную энеpгию. Ведь тело может пеpейти из пеpвой точки во втоpую по pазличным тpаектоpиям
(pис. 2.9).



Опpеделение только тогда будет непpотивоpечивым, когда для любых пеpеходов интегpал спpава в (2.60) будет один и тот же. Именно здесь и выявляется тот формальный пpизнак сил, котоpый позволяет ввести понятие потенциальной энеpгии и о котоpом говоpилось в начале паpагpафа. Потенциальную энергию можно ввести только в таком поле сил, в котоpом pабота силы между двумя любыми точками не зависит от фоpмы пути.
Силы, pабота котоpых между двумя любыми положениями тела не зависит от фоpмы пути, называются консеpвативными. Таким обpазом, потенциальную энеpгию можно ввести только для консеpвативных сил. Пpиведем пpимеpы неконсеpвативной и консеpвативной сил. Все силы тpения являются неконсеpвативными (силы тpения называются диссипативными, от слова "диссипация", котоpое означает "pассеяние" энеpгии в окpужающую сpеду). Совеpшенно очевидно, что pабота силы тpения зависит от фоpмы пути, т.к. она всегда зависит от длины пути. Работа силы тяжести не зависит от фоpмы пути, и поэтому поле тяжести есть поле консеpвативной силы. Докажем это. Пусть тело под действием силы тяжести пеpемещается из точки 1 в точку 2. Найдем pаботу пpи его пеpемещении на dl.

Из pис. 2.10 следует, что работа по данной траектории

Следовательно, pабота силы тяжести определяется только положением начальной и конечной точек траектории вдоль вертикальной оси:

Она, как видим, не зависит от фоpмы пути. Потенциальная же энеpгия в поле тяжести опpеделяется pавенством U 2 -U 1 =mgz 2 -mgz 1 , следовательно, U=mgz.
К консеpвативным силам относятся упpугие силы, силы тяготения. Остановимся подpобнее на силах тяготения и вычислим для них потенциальную энеpгию.

Сила тяготения относится к классу центpальных. В поле тяготения Земли имеется центp сил, совпадающий с центpом Земли; и к котоpому напpавлена сила тяготения. Рассмотpим пpоизвольное элементаpное пеpемещение d спутника Земли в поле тяготения. Его всегда можно pазложить на две составляющие d r и dl , как это сделано на pис. 2.11. d lr напpавлено по pадиусу-вектоpу, dl пеpпендикуляpно к нему.

Поэтому, элементаpную pаботу силы тяготения можно пpедставить следующим обpазом:

Т.к.

Вектоp d r напpавлен пpотив вектоpа силы F, и численно pавен dr - пpиpащению pасстояния от спутника до центpа Земли. Поэтому .
Таким обpазом, pабота силы тяготения на конечном участке тpаектоpии спутника 1-2 вычисляется по формуле

Как видим, pабота опpеделяется только pасстоянием от спутника до центpа сил в начале (r 1) и в конце (r 2) участка движения, т. е. не зависит от фоpмы пути. Следовательно, в pассматpиваемом пpимеpе мы можем ввести потенциальную энеpгию. Ее изменение pавно pаботе силы тяжести со знаком минус. Отсюда

Постоянная выбиpается в соответствии с тем, где находится начало отсчета потенциальной энеpгии. В данной задаче удобно пpинять за нуль потенциальную энеpгию тела, находящуюся на бесконечности. U = 0 пpи r , следовательно, Const = 0.

Тогда

Итак, потенциальная энеpгия тела в поле тяготения убывает обpатно пpопоpционально pасстоянию до центpа сил и имеет отpицательный знак.
К механическим видам энеpгии относят два вида: кинетическую и потенциальную, хотя потенциальная энеpгия может иметь pазличную пpиpоду. Можно найти случаи движения, когда механическая энеpгия не пеpеходит в дpугие виды энеpгии, в частности во внутpеннюю энеpгию тела. Как пpавило, эти случаи связаны с пpенебpежимо малой pолью тpения того или иного типа. В этих случаях можно говоpить о законе сохpанения механической энеpгии. Пpи сохpанении механической энеpгии наблюдается либо пеpеход энеpгии из кинетической фоpмы в потенциальную и обpатно, либо пеpеход механической энеpгии от одного тела к дpугому. Напpимеp, пpи движении тела в поле тяжести или в поле тяготения наблюдается только пеpеход одной механической фоpмы энеpгии в дpугую, а пpи упpугом соудаpении тел наблюдается и пеpеход энеpгии из кинетической фоpмы в потенциальную энеpгию упpугих дефоpмаций (а также обpатный пеpеход), и пеpедача энеpгии от одного соудаpяющегося тела к дpугому. В общем виде закон сохpанения механической энеpгии для системы тел записывается как:

Сумма механических фоpм энеpгии замкнутой консеpвативной системы с течением вpемени остается постоянной. Пpи этом нужно помнить всегда, что закон сохpанения механической энеpгии соблюдается лишь пpи условии, что механическая энеpгия не пеpеходит в дpугие виды энеpгии, что, в частности, тpение в системе несущественно и им можно пpенебpечь.
Как уже упоминалось системы, в котоpых это условие соблюдается, называются консеpвативными. В данном отношении закон сохpанения энеpгии в механике отличается от закона сохpанения импульса: импульс всегда сохpаняется в замкнутых системах, тогда как механическая энеpгия - не всегда, а только в консеpвативных системах.

В качестве пpимеpа пpименения закона сохpанения энеpгии в механике pассмотpим задачу по опpеделению втоpой космической скоpости. Втоpой космической скоpостью называется такая минимальная скоpость запущенного с Земли в космос тела, пpи котоpой оно отpывается от поля тяготения Земли. Такое тело на бесконечности (т. е. очень далеко от Земли) полностью теpяет скоpость. Запишем закон сохpанения механической энеpгии (пpедполагается, что тело забpасывается за пpеделами плотных слоев атмосфеpы, где уже сопpотивлением можно пpенебpечь).

Const выpажает полную энеpгию тела. Найдем ее из условия для энеpгии тела на бесконечности. В бесконечности и потенциальная, и кинетическая энеpгии должны обpатиться в нуль. Следовательно, Сonst = 0, и закон сохpанения энеpгии пpимет вид

Обозначим втоpую космическую скоpость чеpез v 0 . Тело получает ее вблизи повеpхности Земли, когда r pавно pадиусу Земли R. Следовательно,

Вблизи повеpхности Земли сила тяготения pавна силе тяжести тела, т.е.

Подставляя эти выражения в ЗСЭ, получим выpажение для втоpой космической скоpости в виде

Энергия взаимодействия тел. Потенциальной энергией тело само по себе не может обладать. определяется силой, действующей на тело со стороны другого тела. Поскольку взаимодействующие тела равноправны, то потенциальной энергией обладают только взаимодействующие тела.

A = Fs = mg (h 1 - h 2 ).

Теперь рассмотрим движение тела по наклонной плоскости. При перемещении тела вниз по наклонной плоскости сила тяжести совершает работу

A = mgscosα .

Из рисунка видно, что s cosα = h , следовательно

А = mg h .

Выходит, что работа силы тяжести не зависит от траектории движения тела.

Равенство A = mg (h 1 - h 2 ) можно записать в виде A = - (mg h 2 - mgh 1 ).

Т. е. работа силы тяжести при перемещении тела массой m из точки h 1 в точку h 2 по любой траектории равна изменению некоторой физической величины mgh с противоположным знаком.

Физическая величина , равная произведению массы тела на модуль ускорения свободного падения и на высоту, на которую поднято тело над поверхностью Земли, называется потенциальной энергией тела.

Потенциальную энергию обозначают через Е р . Е р = mgh , следовательно:

A = - (Е р 2 - Е р 1 ).

Тело может обладать как положительной, так и отрицательнойпотенциальной энергией. Тело массой m на глубине h от поверхности Земли обладает отрицательной потенциальной энергией: Е р = - mgh .

Рассмотрим потенциальную энергию упругодеформированного тела.

Прикрепим к пружине с жесткостью k брусок, растянем пружину и отпустим брусок. Под действием силы упругости растянутая пружина приведет в действие брусок и переместит его на некоторое расстояние. Вычислим работу силы упругости пружины от некоторого начального значения x 1 до конечного x 2 .

Сила упругости в процессе деформации пружины изменяется. Чтобы найти работу силы упругости можно взять произведение среднего значения модуля силы и модуля перемещения:

А = F у.ср (x 1 - x 2 ).

Так как сила упругости пропорциональна деформации пружины, то среднее значение ее модуля равно

Подставив это выражение в формулу работы силы, получим:

Физическую величину , равную половине произведения жесткости тела на квадрат его деформации, называют потенциальной энергией упругодеформированного тела:

Откуда следует, что A = - (Е р2 - Е р1 ).

Как и величина mgh , потенциальная энергия упругодеформированного тела зависит от координат, поскольку x 1 и x 2 - это удлинения пружины и в то же время - координаты конца пружины. Поэтому можно сказать, что потенциальная энергия во всех случаях зависит от координат.

Кинетическая энергия механической системы - это энергия механического движения этой системы.

Сила F , действуя на покоящееся тело и вызывая его движение, совершает работу, а энергия движущегося тела возрастает на величину затраченной работы. Таким образом, работа dA силы F на пути, который тело прошло за время возрастания скорости от 0 до v, идет на увеличение кинетической энергии dT тела, т. е.

Используя второй закон Ньютона F =mdv /dt

и умножая обе части равенства на перемещение dr , получим

F dr =m(dv /dt)dr=dA

Таким образом, тело массой т, движущееся со скоростью v, обладает кинетической энергией

Т = т v 2 /2. (12.1)

Из формулы (12.1) видно, что кинетическая энергия зависит только от массы и скорости тела, т. е. кинетическая энергия системы есть функция состояния ее движения.

При выводе формулы (12.1) предполагалось, что движение рассматривается в инерциальной системе отсчета, так как иначе нельзя было бы использовать законы Ньютона. В разных инерциальных системах отсчета, движущихся друг относительно друга, скорость тела, а следовательно, и его кинетическая энергия будут неодинаковы. Таким образом, кинетическая энергия зависит от выбора системы отсчета.

Потенциальная энергия - механическая энергия системы тел, определяемая их взаимным расположением и характером сил взаимодействия между ними.

Пусть взаимодействие тел осуществляется посредством силовых полей (например, поля упругих сил, поля гравитационных сил), характеризующихся тем, что работа, совершаемая действующими силами при перемещении тела из одного положения в другое, не зависит от того, по какой траектории это перемещение произошло, а зависит только от начального и конечного положений. Такие поля называются потенциальными, а силы, действующие в них,- консервативными. Если же работа, совершаемая силой, зависит от траектории перемещения тела из одной точки в другую, то такая сила называется диссипативной; ее примером является сила трения.

Тело, находясь в потенциальном поле сил, обладает потенциальной энергией II. Работа консервативных сил при элементарном (бесконечно малом) изменении конфигурации системы равна приращению потенциальной энергии, взятому со знаком минус, так как работа совершается за счет убыли потенциальной энергии:

Работа dА выражается как скалярное произведение силы F на перемещение dr и выражение (12.2) можно записать в виде

F dr =-dП. (12.3)

Следовательно, если известна функция П(r ), то из формулы (12.3) можно найти силу F по модулю и направлению.

Потенциальная энергия может быть определена исходя из (12.3) как

где С - постоянная интегрирования, т. е. потенциальная энергия определяется с точностью до некоторой произвольной постоянной. Это, однако, не отражается на физических законах, так как в них входит или разность потенциальных энергий в двух положениях тела, или производная П по координатам. Поэтому потенциальную энергию тела в каком-то определенном положении считают равной нулю (выбирают нулевой уровень отсчета), а энергию тела в других положениях отсчитывают относительно нулевого уровня. Для консервативных сил

или в векторном виде

F =-gradП, (12.4) где

(i, j, k - единичные векторы координатных осей). Вектор, определяемый выражением (12.5), называется градиентом скаляра П.

Для него наряду с обозначением grad П применяется также обозначение П.  («набла») означает символический вектор, называемый оператором Гамильтона или набла-оператором:

Конкретный вид функции П зависит от характера силового поля. Например, потенциальная энергия тела массой т, поднятого на высоту h над поверхностью Земли, равна

П = mgh, (12.7)

где высота h отсчитывается от нулевого уровня, для которого П 0 = 0. Выражение (12.7) вытекает непосредственно из того, что потенциальная энергия равна работе силы тяжести при падении тела с высоты h на поверхность Земли.

Так как начало отсчета выбирается произвольно, то потенциальная энергия может иметь отрицательное значение (кинетическая энергия всегда положительна!}. Если принять за нуль потенциальную энергию тела, лежащего на поверхности Земли, то потенциальная энергия тела, находящегося на дне шахты (глубина h"), П= - mgh".

Найдем потенциальную энергию упругодеформированного тела (пружины). Сила упругости пропорциональна деформации:

F х упр = -kx,

где F x упр - проекция силы упругости на ось х; k - коэффициент упругости (для пружины - жесткость), а знак минус указывает, что F x упр направлена в сторону, противоположную деформации х.

По третьему закону Ньютона, деформирующая сила равна по модулю силе упругости и противоположно ей направлена, т. е.

F x =-F x упр =kx Элементарная работа dA, совершаемая силой F x при бесконечно малой деформации dx, равна

dA = F x dx = kxdx,

а полная работа

идет на увеличение потенциальной энергии пружины. Таким образом, потенциальная энергия упругодеформированного тела

П=kx 2 /2.

Потенциальная энергия системы, подобно кинетической энергии, является функцией состояния системы. Она зависит только от конфигурации системы и ее положения по отношению к внешним телам.

Полная механическая энергия системы - энергия механического движения и взаимодействия:

т. е. равна сумме кинетической и потенциальной энергий.

Кинетическая энергия - это энергия движения тела. Соотвественно, если у нас есть какой-то объект, обладающий хоть какой-то массой и хоть какой-то скоростью, то он и обладает кинетической энергией. Однако относительно разных систем отсчета эта кинетическая энергия у одного и того же объекта может быть разной.

Пример. Есть бабушка, которая относительно земли нашей планеты находится в состоянии покоя, то есть не движется и, скажем, сидит на остановке в ожидании своего автобуса. Тогда относительно нашей планеты ее кинетическая энергия равна нулю. Но если посмотреть на эту же бабушку с Луны или с Солнца, относительно которых можно наблюдать движение планеты и, соответственно, этой бабушки, которая находится на нашей планете, то бабушка уже будет обладать кинетической энергией относительно упомянутых небесных тел. И тут приезжает автобус. Эта самая бабушка быстро встает и бежит занимать положенное ей место. Теперь относительно планеты она уже не в покое, а вполне себе движется. А значит и обладает кинетической энергией. И чем толще бабушка и быстрее, тем больше ее кинетическая энергия.

Есть несколько фундаментальных видов энергии - основных. Расскажу, например, про механические. К ним относятся энергия кинетическая, которая зависит от скорости и массы объекта, энергия потенциальная, которая зависит от того, где вы возьмете нулевой уровень потенциальной энергии, и от того положения, где находится этот объект относительно нулевого уровня потенциальной энергии. То есть потенциальная энергия - энергия, зависящая от положения объекта. Эта энергия характеризует работу, совершаемую полем, в котором находится объект, по его перемещению.

Пример. Несете вы в руках огромную коробку и падаете. Коробка лежит на полу. Выходит, что нулевой уровень потенциальной энергии у вас будет находится, соответственно, на уровне пола. Тогда верхняя часть коробки будет обладать большей потенциальной энергией, так как она находится выше пола и выше нулевого уровня потенциальной энергии.

Глупо говорить про энергию, не упомянув закон о ее сохранении. Таким образом, по закону сохранения энергии, эти два ее вида, описывающих состояние объекта, ни откуда не берутся и никуда не исчезают, а только переходят друг в друга.

А вот и пример. Падаю я с высоты дома, изначально имея потенциальную энергию относительно земли в момент перед прыжком, а моя кинетическая энергия пренебрежимо мала, поэтому можем приравнять её к нулю. Вот я отрываю ножки от карниза и моя потенциальная энергия начинает уменьшаться, так как высота, на которой я нахожусь, становится все меньше и меньше. В этот же момент при падении вниз я постепенно приобретаю кинетическую энергию, так как падаю вниз все с большей скоростью. В момент падения я уже обладаю максимальной кинетической энергией, но потенциальная равно нулю, такие дела.

Энергия - это то, благодаря чему существует жизнь не только на нашей планете, но и во Вселенной. При этом она может быть очень разной. Так, тепло, звук, свет, электричество, микроволны, калории представляют собой различные виды энергии. Для всех процессов, происходящих вокруг нас, необходима эта субстанция. Большую часть энергии все сущее на Земле получает от Солнца, но имеются и другие ее источники. Солнце передает ее нашей планете столько, сколько бы выработали одновременно 100 млн самых мощных электростанций.

Что такое энергия?

В теории, выдвинутой Альбертом Эйнштейном, изучается взаимосвязь материи и энергии. Этот великий ученый смог доказать способность одной субстанции превращаться в другую. При этом выяснилось, что энергия является самым важным фактором существования тел, а материя вторична.

Энергия - это, по большому счету, способность выполнять какую-то работу. Именно она стоит за понятием силы, способной двигать тело или придавать ему новые свойства. Что же означает термин «энергия»? Физика - это фундаментальная наука, которой посвятили свою жизнь многие ученые разных эпох и стран. Еще Аристотель использовал слово «энергия» для обозначения деятельности человека. В переводе с греческого языка «энергия» - это «деятельность», «сила», «действие», «мощь». Первый раз это слово появилось в трактате ученого-грека под названием «Физика».

В общепринятом сейчас смысле данный термин был введен в обиход английским ученым-физиком Это знаменательное событие произошло в далеком 1807 году. В 50-х годах XIX в. английский механик Уильям Томсон впервые использовал понятие «кинетическая энгергия», а в 1853 г. шотландский физик Уильям Ренкин ввел термин «потенциальная энергия».

Сегодня эта скалярная величина присутствует во всех разделах физики. Она является единой мерой различных форм движения и взаимодействия материи. Другими словами, она представляет собой меру преобразования одних форм в другие.

Единицы измерения и обозначения

Количество энергии измеряется Эта специальная единица в зависимости от вида энергии может иметь разные обозначения, например:

  • W - полная энергия системы.
  • Q - тепловая.
  • U - потенциальная.

Виды энергии

В природе существует множество самых разных видов энергии. Основными из них считаются:

  • механическая;
  • электромагнитная;
  • электрическая;
  • химическая;
  • тепловая;
  • ядерная (атомная).

Есть и другие виды энергии: световая, звука, магнитная. В последние годы все большее число ученых-физиков склоняются к гипотезе о существовании так называемой «темной» энергии. Каждый из перечисленных ранее видов данной субстанции имеет свои особенности. Например, энергия звука способна передаваться при помощи волн. Они способствуют возникновению вибрации барабанных перепонок в ухе людей и животных, благодаря которой можно слышать звуки. В ходе различных химических реакций высвобождается энергия, необходимая для жизнедеятельности всех организмов. Любое топливо, продукты питания, аккумуляторы, батарейки являются хранилищем этой энергии.

Наше светило дает Земле энергию в виде электромагнитных волн. Только так она может преодолеть просторы Космоса. Благодаря современным технологиям, таким как солнечные батареи, мы можем использовать ее с наибольшим эффектом. Излишки неиспользованной энергии аккумулируются в особых энергохранилищах. Наряду с вышеперечисленными видами энергии часто используются термальные источники, реки, океана, биотопливо.

Механическая энергия

Этот вид энергии изучается в разделе физики, называемом «Механикой». Она обозначается буквой Е. Ее измерение осуществляется в джоулях (Дж). Что собой представляет эта энергия? Физика механики изучает движение тел и взаимодействие их друг с другом либо с внешними полями. При этом энергия, обусловленная движением тел, называется кинетической (обозначается Ек), а энергию, обусловленную или внешних полей, именуют потенциальной (Еп). Сумма движения и взаимодействия представляет собой полную механическую энергию системы.

Для расчета обоих видов существует общее правило. Для определения величины энергии следует вычислить работу, необходимую для перевода тела из нулевого состояния в данное состояние. При этом чем больше работа, тем большей энергией будет обладать тело в данном состоянии.

Разделение видов по разным признакам

Существует несколько видов разделения энергии. По разным признакам ее делят на: внешнюю (кинетическую и потенциальную) и внутреннюю (механическую, термическую, электромагнитную, ядерную, гравитационную). Электромагнитная энергия в свою очередь подразделяется на магнитную и электрическую, а ядерная - на энергию слабого и сильного взаимодействия.

Кинетическая

Любые движущиеся тела отличаются наличием кинетической энергии. Она часто так и называется - движущей. Энергия тела, которое движется, теряется при его замедлении. Таким образом, чем быстрее скорость, тем больше кинетическая энергия.

При соприкосновении движущегося тела с неподвижным объектом последнему передается часть кинетической, приводящая и его в движение. Формула энергии кинетической следующая:

  • Е к = mv 2: 2,
    где m — масса тела, v - скорость движения тела.

В словах эту формулу можно выразить следующим образом: кинетическая энергия объекта равна половине произведения его массы на квадрат его скорости.

Потенциальная

Этим видом энергии обладают тела, которые находятся в каком-либо силовом поле. Так, магнитная возникает, когда объект находится под действием магнитного поля. Все тела, находящиеся на земле, обладают потенциальной гравитационной энергией.

В зависимости от свойств объектов изучения они могут иметь различные виды потенциальной энергии. Так, упругие и эластичные тела, которые способны вытягиваться, имеют потенциальную энергию упругости либо натяжения. Любое падающее тело, которое было ранее неподвижно, теряет потенциальную и приобретает кинетическую. При этом величина этих двух видов будет равнозначна. В поле тяготения нашей планеты формула энергии потенциальной будет иметь следующий вид:

  • Е п = mhg,
    где m — масса тела; h - высота центра массы тела над нулевым уровнем; g - ускорение свободного падения.

В словах эту формулу можно выразить так: потенциальная энергия объекта, взаимодействующего с Землей, равна произведению его массы, ускорению свободного падения и высоты, на которой оно находится.

Эта скалярная величина является характеристикой запаса энергии материальной точки (тела), находящейся в потенциальном силовом поле и идущей на приобретение кинетической энергии за счет работы сил поля. Иногда ее называют функцией координат, являющейся слагаемым в лангранжиане системы (функция Лагранжа динамической системы). Эта система описывает их взаимодействие.

Потенциальную энергию приравнивают к нулю для некой конфигурации тел, расположенных в пространстве. Выбор конфигурации определяется удобством дальнейших вычислений и называется «нормировкой потенциальной энергии».

Закон сохранения энергии

Одним из самых основных постулатов физики является Закон сохранения энергии. В соответствии с ним, энергия ниоткуда не возникает и никуда не исчезает. Она постоянно переходит из одной формы в другую. Иными словами, происходит только изменение энергии. Так, например, химическая энергия аккумулятора фонарика преобразуется в электрическую, а из нее - в световую и тепловую. Различные бытовые приборы превращают электрическую в свет, тепло или звук. Чаще всего конечным результатом изменения являются тепло и свет. После этого энергия уходит в окружающее пространство.

Закон энергии способен объяснить многие Ученые утверждают, что общий объем ее во Вселенной постоянно остается неизменным. Никто не может создать энергию заново или уничтожить. Вырабатывая один из ее видов, люди используют энергию топлива, падающей воды, атома. При этом один ее вид превращается в другой.

В 1918 г. ученые смогли доказать, что закон сохранения энергии представляет собой математическое следствие трансляционной симметрии времени - величины сопряженной энергии. Другими словами, энергия сохраняется вследствие того, что законы физики не отличаются в различные моменты времени.

Особенности энергии

Энергия - это способность тела совершать работу. В замкнутых физических системах она сохраняется на протяжении всего времени (пока система будет замкнутой) и представляет собой один из трех аддитивных интегралов движения, сохраняющих величину при движении. К ним относятся: энергия, момент Введение понятия «энергия» целесообразно тогда, когда физическая система однородна во времени.

Внутрення энергия тел

Она представляет собой сумму энергий молекулярных взаимодействий и тепловых движений молекул, составляющих его. Ее нельзя измерить напрямую, поскольку она является однозначной функцией состояния системы. Всегда, когда система оказывается в данном состоянии, ее внутренняя энергия имеет присущее ему значение, независимо от истории существования системы. Изменение внутренней энергии в процессе перехода из одного физического состояния в другое всегда равно разности между ее значениями в конечном и начальном состояниях.

Внутренняя энергия газа

Помимо твердых тел, энергию имеют и газы. Она представляет собой кинетическую энергию теплового (хаотического) движения частиц системы, к которым относятся атомы, молекулы, электроны, ядра. Внутренней энергией идеального газа (математической модели газа) является сумма кинетических энергий его частиц. При этом учитывается число степеней свободы, представляющее собой число независимых переменных, определяющих положение молекулы в пространстве.

С каждым годом человечество потребляет все большее количество энергоресурсов. Чаще всего для получения энергии, необходимой для освещения и отопления наших жилищ, работы автотранспорта и различных механизмов, используются такие ископаемые углеводороды, как уголь, нефть и газ. Они относятся к невозобновимым ресурсам.

К сожалению, только незначительная часть энергии добывается на нашей планете с помощью возобновимых ресурсов, таких как вода, ветер и Солнце. На сегодняшний день их удельный вес в энергетике составляет всего 5 %. Еще 3 % люди получают в виде ядерной энергии, производимой на атомных электростанциях.

Имеют следующие запасы (в джоулях):

  • ядерная энергия - 2 х 10 24 ;
  • энергия газа и нефти - 2 х 10 23 ;
  • внутренне тепло планеты - 5 х 10 20 .

Годовая величина возобновляемых ресурсов Земли:

  • энергия Солнца - 2 х 10 24 ;
  • ветер - 6 х 10 21 ;
  • реки - 6,5 х 10 19 ;
  • морские приливы - 2,5 х 10 23 .

Только при своевременном переходе от использования невозобновляемых запасов энергии Земли к возобновляемым человечество имеет шанс на долгое и счастливое существование на нашей планете. Для воплощения передовых разработок ученые всего мира продолжают тщательно изучать разнообразные свойства энергии.



Понравилась статья? Поделиться с друзьями: